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The theory incorporated in a general-purpose automatic atomic-structure program is formulated in detail. The 
computer program, which is called SUPERSTRUCTURE, will be published soon. SUPERSTRUCTURE can calcu- 
late term energies, intermediate-coupling energy levels, term-coupling coefficients, radiative data which includes 
permitted and forbidden transition probabilities, and cascade coefficients. The program uses multi-configuration 
type expansions. Relativistic corrections are made by means of the Breit-Pauli approximation. Special attention 
is paid to those features of the formulation which make it particularly suited to the computer. Such principal features 
are: 

(i) Wave functions are effectively expanded in Slater determinants. 
(ii) Expressions for the matrix elements of the relativistic operators are given in a concise form. These matrix 

elements are expressed in terms of coefficients cx(lm, I'm'), related to the corresponding coefficients of Condon 
and Shortley, and coefficients dk(lm , I'm'), which we introduce. Relativistic operators whose matrix elements 
have similar angular parts are grouped together to avoid superfluous calculation of angular coefficients. 

(iii) Radial functions can be either statistical-model functions of user-supplied functions. SUPERSTRUCTURE will 
calculate the statistical-model radial functions if they are required, and user-supplied functions will be processed 
to suite the internal requirements of the program. 

Checking procedures used for testing the various parts of SUPERSTRUCTURE are discussed. We also give a 
critique of the techniques described, and, where appropriate, discuss them in relation to techniques used by other 
workers. 

The wide range of atomic structure data which the program can calculate makes it highly suitable for astro- 
physical applications. The formulation developed here should be of wide application in various problems relating 
to atomic structure. 

1. Introduction 

The large quan t i t i e s  o f  numer ica l  a tomic  data  requi red  in as t rophysica l  appl ica t ions  have made  it necessary to 

develope genera l -purpose  a u t o m a t i c  c o m p u t e r  p rograms wh ich  can calculate  energy levels, radiat ive t r ans i t ion  

probabi l i t ies  and  e lec t ron  ion coll ision data.  In this  c o n t e x t  a genera l -purpose  p rogram means  a p rog ram wh ich  

is no t  specific to cer ta in  a toms ,  ions or  iso-electronic sequences ,  bu t  which  can,  in pr inciple ,  be appl ied to all 

a tomic  systems.  An  " a u t o m a t i c "  p rogram means  a se l f -conta ined  program in the  sense t ha t  all algebraic coefficient~ 

and  wave func t ions  are ca lcula ted wi th in  the program.  The  inpu t  requi red  by  such a p rogram should  be  the  mini- 

m u m  requi red  to specify the  a tomic  sys tem and  the  level o f  a p p r o x i m a t i o n .  Eissner [ 1 ] has  given a b r i e f  descrip- 
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tion of a program package which goes a long way to fulfilling the above requirements. The present paper relates to 
that part of the package dealing with atomic structure data, namely: term energies, intermediate-coupling energy 
levels, term-coupling coefficients and radiative data. This program will be referred to as "SUPERSTRUCTURE" 
and i,t ~Will shortly be published in Computer  Physics Communicat ions under this name. In reference [1] SUPER- 
STRUCTURE has been quoted by the name ASAR. 

A central feature of SUPERSTRUCTURE is the method used to generate eigenfunctions of the angular momen- 
tum operators L 2, Lz ,  S 2 and S z. It uses the Slater state expansion technique, which was described in detail by 
Condon and Shortley [2]. The particular suitability of this method for the computer was first pointed out by 
Godfredsen [3] in connection with the algebraic problems of configuration interaction. SUPERSTRUCTURE then 
uses these eigenfunctions in the calculation of the matrix elements of: 

(i) the non-relativistic many-electron hamiltonian [4], 
(ii) the relativistic operators of the Breit-Pauli hamiltonian [5, 6], 

(iii) the operators for electric dipole and quadrupole radiation [7]. 

The program allows the user to take into account configuration-mixing effects: in principle there is no restric- 
tion upon the types of  configuration which may be included in the configuration expansion of the wavefunction. 

When calculating astrophysical data, it is often particularly important to take account of relativistic effects: 
for example, transition probabilities can be strongly affected by breakdown in LS-coupling, which is caused 
mainly by spin-orbit  interaction. SUPERSTRUCTURE calculates radiative data in both Russell-Saunders (LS)- 

coupling and intermediate coupling. Moreover, electron-ion collision cross-sections can also be considerably 
modified by departure from LS-coupling in the target ion [8]. SUPERSTRUCTURE also calculates term-coupling 
coefficients which enable Saraph's program JAJOM [9] to take into account intermediate-coupling effects when 
calculating fine structure collision strengths from LS-coupling reactance matrices. 

Other important features of SUPERSTRUCTURE are: 
(a) Algebraic and analytic problems are dealt with in separate parallel branches of the program. This makes it 

particularly suitable for studying iso-electronic sequences: the algebra is calculated once and for all at the begin- 
ning, and the analytic branch is called to calculate radial wavefunctions, energies etc. for each new member of 
the sequence. 

(b) There is flexibility in the type of radial wavefunctions which may be used. Radial wavefunctions can 
either be (i) supplied by the user or (ii) computed within the program in a modified Thomas Fermi potential [4]. 

(c) The program can process the intermediate-coupling electric dipole transition probabilities to give cascade 
coefficients. These coefficients contain transition probability information in a compact form which is particularly 
suitable for a variety of astrophysical applications. 

The plan of the paper is as follows: in section 2 the non-relativistic problem is considered, including a detailed 
description of the procedure used to generate the vector-coupling coefficients with which the eigenfunctions of 
L 2, L z, S 2 and S z are constructed. Section 2 also includes a description of the way in which the variational 
procedure is applied within the program. In section 3, the matrix elements of the operators of the Breit Pauli 
hamiltonian are expressed in a concise form, suitable for computation. After describing the method of calculation 
section 3 ends with a discussion of the accuracy of the Breit-Pauli approximation. The radiative problem is 
formulated in section 4. In section 5, the term-coupling coefficients are defined and discussed. Section 6 is a 
review of the checking procedures used for testing the various parts of SUPERSTRUCTURE. The paper is con- 
cluded with section 7 which consists of a critique of the techniques described in the sections which precede it. 
As well as containing some suggestions for further refinements of certain aspects of SUPERSTRUCTURE, 
section 7 contains a brief comparison of some of the techniques with those adopted by other workers. 

It is hoped that this full description of the techniques incorporated in our multi-purpose atomic structure 
package will be of help to other workers who are developing similar packages. For this reason, the formulation 
of the theory sometimes extends beyond that actually incorporated in SUPERSTRUCTURE. 

Throughout this paper, the works of Condon and Shortley [2], and Eissner and Nussbaumer [4] will be 
referred to as TAS and EN respectively. 
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2. The non-relativistic problem 

2.1. The non-relativ&tic hamiltonian and its matrix elements 

The non-relativistic bound-state problem of one electron in the field of  a nucleus, that is hydrogenic systems, 
can be solved exactly. For systems with more than one electron it is not possible to obtain a solution in closed 
analytic form: approximate solutions are sought which satisfy the variational principle: 

6 {(tlH Elt')} = 0 (1) 

(see for example ref. [ 11 ] ). In eq. (1) t and t '  label the trial functions. In the non-relativistic problem H is given 
by: 

N 
H = H n r = i ~ = l h i + ~  2 ,  where h i = - V  2 2Z (2) 

= i>j rg r i 

In (2), N is the number of  electrons, and Z is the electric.charge of the nucleus as given by the number of  protons. 
In eq. (2) and subsequently, the Bohr radius a 0 = h2/me 2 = 0.529 X 10 -8  cm is the unit of  length, and the Rydberg 
Ry = e2/2a 0 = 13.59 eV is the unit of  energy; angular momenta will be scaled in units o fh  = 1.054 X 10-27 erg-sec 
In a system described by the hamiltonian (2), the total spin S and the.total orbital angular momentum L are sepa- 
rately conserved. In practice, the rather formal matrix element on the left-hand side of  (1) is evaluated between 
coordinate functions (XI t). If  we assume that these functions are separable in the coordinates of  each electron, 
it follows that each label t can be written more explicitly in terms of  a configuration label and definite values of  
S and L, where a configuration is defined by aset  of one-particle orbitals nil i. We can represent a configuration 
thus: 

C z (n 1 l 1)ql (n2/2)q2 .-. (nmlm)qm, where 
m 

q7 = N. (3) 
3,=1 

Each configuration gives rise to a set of  terms t where 

t = C/3SL, (4) 

in which/3 is a degeneracy parameter taking into account those cases when a configuration C gives rise to more 
than one term with the same SL. 

In general, the wavefunctions determined from eq. (1), with H given by (2), will be linear combinations of  
wavefunctions designated by the labels t of eq. (4): 

[ FSLMsM L ) = (C/3SL [ FSL)] C~SLMsM L ). (5) 

On the right-hand side of eq. (5) there is an implied summation over C/3. The expansion (5) is a consequence of  
the fact that Hnr is not diagonal with respect to configurations C nor with respect to any degenerate terms/3 with- 
in those configurations. We will refer to the representation t as the configuration representation. In this represen- 
tation the angular coefficients A and B in the following expansion of  the matrix elements of  Hnr are purely alge- 
braic: 

In (6), I and R x are the radial integrals 
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(7) 

and 

o o  

Rx(ab, cd) = f dr Pb(r) Pd(r) yx(a, c; r) in which 

0 

yx(a, c ; r ) =  r@+l of dr' Pa(r')r 'x Pc(r')+rX r dr' Pa(r') r ~x+l Pc(r')" (8, 

In the expansion (6), the index v numbers each coefficient. It is assumed that in the first summation on the 
right-hand side of  (6), a and c depend upon t, t ' and u where a = nal a, c = nClC; in the second summation it is as- 
sumed that a, b, c, d and X depend upon t, t ' and v. 

The coefficients A (v) and B (v) are calculated from wave functions (X[ tMsML), which are effectively expanded 
in terms of  Slater determinants. As discussed in section 2.2, we can work in terms of  Slater states when calculat- 
ing algebraic coefficients A (v) and B(V): the states [t MsM L) can be expanded in terms of  Slater states thus: 

It) = (ult) lu). (9) 

In (9) we have omitted MsM L from both sides of  the equation: we assume that the value o f M s M  L is included 
within the Slater state label u, which is summed over in (9). A Slater state lu) is defined by 

N 

[u) = ~ Inqlqtaqrnq), (10) 
q=l 

where nqlq#qmq represents the usual set of  one-electron quantum numbers nlmsm I for the qth electronic state. 
In order to obtain consistent sets of  coupling coefficients (ult) it is necessary, among other things, to list the sets 
of  one-electron quantum numbers in some conventional order. Within SUPERSTRUCTURE we use the standard 
order specified in TAS (chapter 6), that is: (a) all the subsets are listed shell by shell, all the sets of  a given shell 
being placed together, (b) within each shell, the sets are listed in decreasing order of  m, the set with/a = + ½ being 
placed before the set with ~ -- - ~- when both sets have the same value of  m. In eq. (9) the summation over the 
Slater states u must include all those states u satisfying 

N N 

The matrix elements of  lint are evaluated in the Slater state representation u and are then transformed into 
the configuration representation t using (9), that is 

(tlHnr[ t') = (tlu) (ulgnrlU') (u'[ t ' ) .  (12) 

The transformation coefficients (u It) appearing in (9) and (12) are normally referred to as vector-coupling 
coefficients: Eissner and Nussbaumer write them more explicitly in the form 

/~ 1 u2m2 taNmN MsML 

where commas separate groups of  equivalent electrons. The vector-coupling coefficients are obtained by means 
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of  a procedure which is described in detail in section 2.2. Necessary precautions required to ensure phase consis- 
tency between the eigenvectors belonging to different MsM1. of  any given term SL are also discussed in that sec- 
tion. As coefficients relating the orthonomml basis sets [uS and [tMxM L ) to each other wilhin a given subspace 
{MsM1. } the C's musl satis['y 

u{MsML ~ lml l ' t2rn2"taNmN; M s M L - - l m l l - t 2 m 2 " " t - t N m N ;  MsML =8(~ ,~ ' )8 (S ,S ' )8 (L ,L ' ) ,  (13) 

which reflects the identity 

(tlu)(ul t') = 8( t, t'). (14) 

We now consider how (UlHnr[U') is calculated. We note first that the matrix elements of  Hnr are independent of  
MsM L . Secondly we note that the Slater determinants are constructed from one-electron wave functions which 
are separable in spherical polar coordinates: 

(~ll;un Ior) = ~nl[ r) (h,  ID (it[ ~), 

whe re (15) 

(rlnl) = Rnl(r ) = (1/r)Pnl(r), (Vllm) = Ytm(O, ~), (/mlV) = Y~m(O, ~). 

Choosing spherical harmonics Ylm(O, ¢) for orbital functions (~[lm) is consistent with the usual meaning of  the 
component index m ((ri 1,05 = x/3-/@r cos 0 and (~[ 1, +15 = ¥ wr3/87r sin 0 e+ie relates 0 and ~ of the direction 
vector ~ to the three vectors [ lm)); (ols = ~, it) is a spin function. Techniques for evaluating matrix elements 
between Slater states have been described in TAS (chapter 6). It will be assumed that the one-electron wave func- 
tions form an orthonormal set. The radial functions in (15) should therefore satisfy the condition 

f e,t(r) e,,t(~) dr = ~..,. (16) 
0 

According to TAS, the matrix elements of  one-electron operators in a Slater determinant representation can be 
expressed in terms of  matrix elements between one-electron functions. The matrix elements of  the one-electron 
operators of  lint between one-electron wave functions satisfying (15) and (16) are 

¢al V 2 - 2Z/rlc) = 8 ( S ,  tt c) 8(m a, m c) 8(l a, l c) I(a, c )  (17) 
4 

Similarly, the matrix elements of  two-electron operators between N-electron Slater determinants can be expressed 
in terms of  matrix elements between products of two-electron wavefunctions. Thus we also require 

abt 2 c.d~ / = 8(ma + rn b mC + md ) 6(~ta,/jc) 6(/~b, i~d) ~ ( 1)m a m d c~(lam a, lCm c) cx(lbm b, ldm d) Rx(ab, ca), 
I r 1 2  / ' x = 0  " 

where 

cx(lrn, l,rn,)=x/(2l+l)(21'+l)l,'%ll'kl,'%. • , ,  • , ,  l l '  3. 
2~.+1 "~"~000 ' ' ~  m m ' r n '  m 

(18) 

Eq. (A9), in Appendix A, indicates that the-angular coefficients c a introduced in (I 8) originate from a spherical 
tensor operator C[ x] in fact from factorizing 1/r#.; the coefficients clz l' x , m' ~ are Clebsch Gordan coefficients. 

Eissner and Nussbaumer ([4] ,  section 3) give full details of  how the matrix elements (ulgnrlU'> are deduced 
from one-electron and two-electron matrix elements given in eq. (17) and (18) respectively. They also discuss how 
the transformation (12) is applied to yield (tlHnr[ t') and how the coefficients A (v) and B (v) are obtained. 
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2.2. The method for calculating vector-coupling coefficients 

We consider in some detail the procedures employed in SUPERSTRUCTURE for the calculation of the vector- 
coupling coefficients of eq. (9), since considerable care is required to obtain sets of coefficients with consistent 
phases. Lack of phase consistency can lead to serious errors in the matrix elements of the fine-structure interac- 
tions and in the radiative matrix elements. 

2. 2.1. Slater states and Slater determinan ts 
The program employs techniques in which all the angular operators act on Slater states [u) rather than on the 

spatial and spin coordinates in the Slater determinants (Xl, -", XN1911u), where Xp = (rp, {yp) and 91 is the complete- 
ly antisymmetric normalised permutation operator. Hence throughout the whole program we never deal explicitly 
with Slater determinants. A sufficiently large set of standard ordered Slater states is set up, and sufficient informa- 
tion to specify this set is retained in the algebraic branch of the program. The antisymmetrisation operation re- 
presented by 91 may be equally well carried out by permuting the sets (nqlqlaqmq) or by permuting the particle 
vectors Xp. By considering the N? sets in 91 lu) for each u, and incidentally promoting the sequential indices q in 
(1 0) to particle indices p, we can account for the effect of antisymmetrisation without explicitly using Slater 
determinants. 

2.2.2. Procedure 
The vector-coupling coefficients (VCC's) are obtained by finding linear combinations of Slater states which 

are simultaneous eigenvectors of S 2 and L 2. This is accomplished by diagonalising the matrices of S 2 and L 2, 
followed by application of stepping operators S and L_.  In practice, the program adopts the following proce- 
dure: 
(i) The matrices o f S  2 and L 2 are evaluated in the Slater state representation. Let Jrepresent an angular momen- 
tum operator S or L. We express J in the orbital reference frame induced by our choice in (15), that is by its three 
spherical tensor components Jx : 

N 

J 2 = J + J _ + J 2 - J  O, J K = p ~ l j ~ ( p ) ,  ~ : = - 1 , 0 , + 1 .  (19,20) 

Eq. (20) shows how J is composed of one-particle operators, and it introduces a useful notation for particle indices. 
In order to evaluate (u [/2 l u'), the following relations will be required: 

N N N 
J01u) =M]u), J+ ]-] ]~qjqmq) = ~ x/(jp ¥ mp)(jp +- mp + 1) ~] [~qjqmq +- 8pq), (21) 

q =1 p=l q=l 

where ~3q represents those one-particle quantum numbers that are not affected by J, and M is the sum over the 
mq'S, which is M S or M L . Eqs. (l 9) and (2 1) bring out the reducibility pattern for S 2 and L 2: state subspaces 
classified by {M S, M L } are invariant. Let us first consider one such set (M S, M L } of Slater states u. 
(ii) The matrix (ulS 2 lu') is diagonalised. Let the real unitary matrix, which performs this diagonalisation, be T; 
that is 

~ ,  Tui(ulg2lu ') Tu, i, = 8ii, S(S + 1). 
U,U 

(iii) The matrix (ulL2lu ') is set up and transformed thus: 

(22) 

2 , Tui(ulL lu ) Tu, i, = Uii, . (23) 
U }U 
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(iv) The matrix Uii, is diagonalised: 

Vit U~>., Vi, t, = 8tt, L(L + 1), (24) 
i,i' 

In eq. (23), the index t refers to the representation defined in (4). 

(v) The VCC's are obtained from the columns of the product TV, that is 

5 , i v i t  = <ut t>. (25)  
i 

The subsequent steps in the procedure will depend upon the choice of  an input parameter MOb + which governs 
the choice and range o f M s M  L for which VCC's are to be computed. The above diagonalisation procedure is ade- 
quate when a Slater state set belonging to only one { M s , M L }  is required. For example, the set {IMsJ = 
minimum i.e. 0 or l ,  ML = 0} suffices for computing term energies. However in the calculation of  radiative data 
and matrix elements for fine structure interactions, VCC's for more than one M s M  L of  a given SL will be required. 
Use of  the above diagonalisation procedure for more than one M s M  L will in general lead to phase inconsistencies 
between the different sets of  vector-coupling coefficients. Two separate cases arise: 

(a) Non-degenerate terms SL. Systems of  vectors belonging to {MsM L } and (MsM'  L } and the same SL are 
anabiguous by a factor -+1, corresponding to a reflection in the space of  the SL's. 

(b) Configurations which give rise to y degenerate terms SL. The ambiguity in a set of  vectors belonging to a 
given M s M  L will involve a rotation in the T-dimensional subspace o fSL .  

Taking case (a) first, it is convenient to use the diagonalisation procedure for all required MsML,  since it auto- 
matically gives eigenvectors satisfying the orthogonality relation (13). Phase adjustments are made as they are 
required. In detail, the following sequence is used: 

(1) The diagonalisation procedure [(i) to (v) above] is applied for the set of  Slater states belonging to 
(M S = S, M L = L), giving a set of  coefficients (CSL M S = S, 341. = LJu). 

(2) The diagonalisation procedure is applied for the set of  states belonging to (M S = S 1, M L = L), giving a 
set of  coefficients (CSL M s- = S 1, MI. = L lu). 

(3) The first non-vanishing coefficient of  a particular Slater state, say the pth state, is picked out from the 
set obtained in step (2). A partial application of S to the eigenvector I CSLM S S, M L = L) using the relation 

S ICSLMsML )= ~ ( u I C S L M s M L ) S l u ) = x / - ( S + M s ) ( S -  M s + I ) I C S L M  S 1ML), (26) 
iI 

together with the relation (21) for S lu) yields the pth coefficient of  the set u(M S = S 1, M L = L)*.  The coef- 
ficient obtained in this way is compared with the corresponding coefficient obtained from step (2). If the sign 
differs, the whole of  the latter vector is multiplied through by 1. 

(4) Steps (1) to (3) may be repeated until coefficients for the required number of  values of  M S are obtained. 
(5) T o o b t a i n v e c t o r s w i t h M L  < L , L  i s a p p l i e d t o t h e e i g e n v e c t o r l C S L M s = S ,  ML + l ) ( M  L ~ L ) .  
In case (b) the procedure is very similar to that outlined in steps (1) to (5) above. However. in step (3), the 

whole eigenvector, rather than just one component is computed by the application of stepping operators (as in 
the example given in TAS ch. 8, section 5). The vectors obtained by the diagonalisation procedure for M S < S 
and 341. < L are discarded. Of course application of  the diagonalisation procedure for M S = S, M L = L is always 
sufficient to ensure orthogonality of vectors belonging to different SE [eq. (13)]. 

Steps (1) to (5) are a simplification of  lhe procedure actually implemented in SUPERSTRUCTURE, since they 
concentrate on only one term SL. SUPERSTRUCTURE begins generating VCC's tbr the term with the highest 
values of  S and L in the configurations being considered. As the step-down operators S and L are applied eigen- 
vectors of  terms with lower values o r s  and L appear successively. However the remaining terms (which have higher 

Here and in a number of subsequent examples the Fortran notation of the package is used. 
* Evaluation of VCC's by application of stepping operators is tully explained in chapter 8, section5 of TAS. 
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values of  S or L than the new term) have appeared before and so their eigenvectors are obtained either by phase 
adjustment of  the eigenvectors resulting from the diagonalisation or entirely from the stepping procedure, depend- 
ing on whether they are of  type (a) o1 (b) respectively. 

2.2.3. Critical discussion 
We make three comments on the techniques employed: 

(i) The VCC's could all be derived by stepping operations S+ and L+ from the eigenvector I C~SL [Ms l=minimum , 
ML=O). This would sometimes be faster, but even then only marginally. Use of  this would have made the code 
considerably more complicated and in many cases it would increase the storage requirements. The procedure des- 
cribed above is very flexible in that it allows one to easily control the range of  values o f M s M  L over which Slater 
states and VCC's are available. In SUPERSTRUCTURE this range is controlled by an input parameter MOD. For 
example MOD = 3 specifies that VCC's are to be calculated for M S = S and M L = L : this is adequate for calculation 
of  non-relativistic term energies for a given type SL; since the smallest possible set of  Slater states and VCC's is 
used, both storage and computer time requirements are minimised. However this option would be difficult to im- 
plement economically if all coefficients were generated from the eigenfunction with M S = minimum and M L = O. 
(ii) In our procedure, matrix diagonalisations are carried out, that is, eigenvalue problems are solved. In all cases 
the eigenvalues themselves are known, and thus all that is required is the solution of  sets of  linear simultaneous 
equations. However, with a matrix diagonalization routine available in the package for other purposes we adopted 
the approach described above; it is no thought that it leads to any significant inefficiency. 
(iii) It was remarked earlier that there is no need to carry out any matrix diagonalisations to generate VCC's for 
negative values o f M  S or M L . SUPERSTRUCTURE does however carry out matrix diagonalisations for all required 
values o f M s M  L and thus it may do some superfluous work. However, it is possible to reject Slater states and 
VCC's for all or most negative values o f M  S and M L in the majority of  calculations, so that in practice very little 
timewasting occurs and an increase in the complexity of  the code is avoided. 

2.3. Radial wave functions 

SUPERSTRUCTURE can use either (i) Thomas-Fermi  statistical model radial functions calculated within the 
program, or (ii) radial functions provided as input in numerical form. 

In case (i) the radial functions Pnl are solutions of  the equation 

- { d 2 l(l+ 1) + 2V(Xl. ,r)+enl} Pnl(r)=O ' (27) 
r 2 

subject to the boundary conditions 

lim {Pnl /r  l+1) = Anl  , lira {Pnl(r)) --- Bnl exp(-x/Tr) ,  (28) 
r - - + ~  r...+ ~ 

where Anl and Bnl are constants. In (27) the potential V(XI, r) is a scaled statistical model potential of  Thomas-- 
Fermi-Dirac type, described by Gomb(ts [10]. This potential can be written in the form 

V(X l, r) = ~ ( Z , N ,  r/Xl)/r, (29) 

where 

lim ~ ( Z , N , r / X I ) = Z  , lim ~ Z ( Z , N , r / ? , I ) = Z - ( N  I). (30) 
r---* 0 r - -+~  

The way in which the scaling parameter h I enters the potential is discussed in EN. Since the potential V in (27) 
is the same for all radial functions with the same l, it follows that the orthogonality condition (16) will be 
automatically satisfied. With wavefunctions which satisfy eq. (27) we can write the one-body integrals I of  eq. (7) 
in the following form: 
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? 
l(a, c) = ea6(a, c) +2 J dr Pa(r){ V(X l, r) Z/r} Pc(r). (31) 

o 

In case (ii) the user must supply functions p(O) and functions ,-~(0) defined by ~ n l  

{__ d 2 l(l+ 1) 2Z_} p(Ol)(r)" (32) 
Q(°)(r) = dr 2 + r2 

SUPERSTRUCTURE uses functions P and Q tabulated on a grid consisting of intervals containing a number of  
equal steps: the step length is doubled from one interval to the next as the radial variable increases. To accomo- 
date radial functions tabulated on other grids, the program interpolates the supplied functions so that they suit 
the requirements of  the program. A 6-point Lagrange interpolation formula is used: 

ti+5 g+5 

f(x) = ~ L(x , t )  f(xt), where L(x , t )=  [] (x -xr)/(x t Xr), ( 3 3  34) 
t=t  1 t = t l  

(t~-T) 
The function f(xt)  is an input function P(n °) or Q(n °). The points x t are those at which the input functions are 
tabulated. The input functions do not need to be orthonormal: if they are not, a Schmidt procedure is used to 
produce orthonormal functions, so that (16) is satisfied: 

p _p(O) ~ Cnl, n,lPn,l, where Cnl, n, l = (1-'(O)lPn,l). (35, 36) nl - nl n' < n 

In (35) and (36) the functions Pn'l are those which have already been orthogonalised, the sum over n' extending 
over the functions Pn'l which have already been processed. Starting with the first function read in by the program, 
which has n' = n 1 , say, we set 

~0) (37) 
P h i  l = nl  l. 

The recurrence relation (35) is then applied for each successive principal quantum number n. with n increasing. 
The same procedure is simultaneously applied to the input functions Qnl, using the same coefficients Cnl, n 7 The 
functions p(0) are normalised in the usual way, and the corresponding Qnl are multiplied by the same normalising 
factors. 

Finally we note that in tel-ms of the functions Pnl and Qnl, the integrals I will be given by 

I(a, c) = f Pa(r) Qc(r) dr. (38) 
o 

2.4. Energy eigenvalues and eigenfunctions: application of' the variational principle 

The variational principle (1) can be satisfied exactly for the off-diagonal matrix elements by straightforward 
matrix diagonalisation, which may be represented by the transformation 

(PSL {Hnr[ F'SL) = 5 Cc'(FSLI t)(t [Hnrl t')(t'[ FSL), (39) 

where the elements (FSLIt) of  the equivalence transformation are equal to the configuration-mixing coefficients 
of  eq. (5); they are independent o f M s M  L . The vector space of  the I C(3SLMsM L) is incomplete, since the con- 
figuration expansion is always truncated. With this property in mind we introduce an alternative notation for the 
coefficients of  the real orthonormal configuration mixing matrix. 
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a SL (F, C/3) = (FSLIC~SL).  (40) 

If  scaled statistical model radial wave functions are employed, the wave functions Pnl depend upon the scaling 
parameters X l, which therefore can be treated as variational parameters. We write 

E i = Ei(3,s, Xp, " ')  = (FSLIHnrl FSL), (41) 

where the maximum number NEXTRE of adjusting parameters is equal to the number of different orbital angular 
momenta in the set of orbitals involved. Eq. (1) can now be replaced by 

f INCLUD )} 

.i~=l giEi(Xs, Xp, "'" = 0 ,  (42) 

where gi is the statistical weight of the term i and INCLUD is the number of energies included in the minimisa- 
tion procedure. 

SUPERSTRUCTURE allows some flexibility in the minimisation procedure. In discussing the possible ways 
of carrying out the procedure, we will use the following nomenclature': 

(1) If an approximation to the physical term energies of a given configuration is required, that configuration 
will be called a "spectroscopic configuration". 

(2) Two types of configurations may be added in order to give a better description of the terms of interest. 
These are, firstly, configurations in the same complex*, and secondly, so-called correlation configurations, which 
are additional configurations not belonging to the complex but whose effects are comparable to those of con- 
figurations belonging to the complex. The energies of terms arising from the correlation configurations will not 
be meaningful in a spectroscopic sense. In addition, terms belonging to spectroscopic and correlation configura- 
tions will be referred to as "spectroscopic terms" and "correlation terms" respectively. This nomenclature is 
consistent with that introduced by Weiss [13]. 

Returning to (42), it is usual to set the parameter INCLUD to a value such that all terms up to the highest 
term of interest are included in the summation. This choice leads to a common set of radial functions, particu- 
larly convenient for the calculation of relativistic corrections and radiative data. Terms arising from correlation 
configurations should not be included within the summation of (42). We also note that correlation terms which 
do not interact with any of the spectroscopic terms are redundant and may be-suppressed. SUPERSTRUCTURE 
allows for this: a number KCUT, which can be specified in the input, signifies that configurations e k having 
k > KCUT are to be treated as correlation configurations. Any correlation terms which are not matched by at 
least one spectroscopic term with the same values of S and L will then be suppressed. KCUT may also be used 
to suppress superfluous terms arising from configurations within the complex. The parameter INCLUD should 
not exceed the number of terms in the first KCUT configurations. For example, consider the terms arising from 
the three lowest configurations of a carbon-like ion: 

e l =  ls22s22p 2, (?2 = ls22s2p 3, C3 = ls22p 4- 

Suppose that a correlation configuration ~ 4 = 1 s22s 2p23d is included, using a suitable 3d radial function. Only 
nine of the twenty.eight terms arising from C 4 need be retained, namely the four 3p terms, the four 1D terms 
and the single 1S term, all of which couple with terms arising from (? 1 and C 3- 

The following points of practical importance should be noted: (i) Layzer [14] has shown that it is essential 
to include all the configurations of the complex in order to correctly reproduce the first two terms of the Z- 
expansion of the non-relativistic energy. Thus, all the configurations of the complex should be included, as far 
as this is practicable. In the above example, e 1 and (~3 lie in the same complex and should thus both be included 
in the calculation. In some cases the number of configurations in the complex can be impracticably large. 

* A complex is defined by a set of principal quantum numbers and a definite parity [14]. 
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Nussbaumer [15] has considered such a case. Using first-order perturbation theory for the configuration-mixing 
wavefnnction as a basis for his discussion, Nussbaumer gives some criteria for selecting the most important con- 
figurations of  the complex and illustrates their application with a detailed numerical example. (ii) When correla- 
tion configurations are included which contain orbitals with angular momenta l differing from those o f  any 
orbitals already present in the spectroscopic configurations, these orbitals should have a similar mean radius to 
those orbitals of  the spectroscopic configurations for which they substitute ([ 16] • also re f. [17] gives numerical 
examples from multi-configuration Hart ree-Fock calculations). In the C I sequence example given above, the 
3d orbitals of configuration Q 4 should have a similar mean radius to the 2s orbital [17, 18] to distinguish this 
correlation orbital from an ordinary excited-state orbital, we denote it by 3d or, more generally, hi. 

It is possible to run SUPERSTRUCTURE in a mode such that only terms with one value SL are considered. 
This approach, which is inherent in most selfconsistent-field programs, will result in a minor improvement in the 
term energies, ttowever, this is achieved at the expense of  having different sets of  radial functions for different 
values SL.  In applications such as calculation of  radiative data or of  collision processes involving more than one 
sort of  SL,  one would have to orthogonalize the sets first as described in section 2.3; otherwise one cannot solve 
the angular problems with mere algebraic means. Therefore in most applications it is better to assume a common 
set of  radial functions right from the start, and to expand in terms of  more configurations instead. 

3. Relativistic corrections 

3.1. The Breit  Pauli hamil tonian 

The Breit-Pauli hamiltonian HBp can be written 

HBp = Hnr +Hrc ' (43) 

where Hnr has been defined in (2) and Hrc is a sum of relativistic correction operators: 

N 
Hrc = ~ (fi(mass) +fi(d) + fi(so)) + ~ { g0{so + so') + gi](ss') + gi/(css') + go(d) + gi j(oo')}  . (44) 

= i>j 

In (44) the various operators are: 
(i) The one-body terms 

f/(mass) = g~l-2"4vi, ft.(d)= ~Z~2V2(1 /r i ) ,  ft.(so) = ( Z a 2 / r 3 ) l ( i ) s ( i ) .  (45) 

(ii) The two-body fine structure terms 

gi/(so +so)--o~ ~ r  i (s(i)+~(]))+ \r 3- 
(46) 

gij(ss, ) = 2c~2 ~s(i)_'_s(j) 3 (s(i) "r i j) ( s ( j )  "ri/) }'. 
1, r 3 r 5. 

(iii) The two-body non-fine structure terms 

' 1~ 2w2 (rq/j)' ' ~r@@ r i j ' ( r i J ' P ] ) P i )  
gij(CSS ) = T16rc °t 2 $(i) . s ( j )  6 3(rij), gq(d) = ~ ,  v i gij(oo ) = - i 'P j  + r 3 . (47) 

q 
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In eqs. (45), (46) and (47), those operators already purely spherical have their particle index attached according 
to the notation in (20). Others have yet to be reduced before evaluating matrix elements in a Slater state represen- 
tation: this will involve spherical vector operators C(q) when expanding the radius vector rij = r !  r i (see explicit 
expression in (105));i0 q can be expressed in terms of l(q); factors 1/ri! involve products C[x] (i) '  CIX] (j) in a 
Legendre series, which is familiar from deriving (18). 

A dot has been used to indicate scalar multiplication (a-  b). When evaluating matrix elements of (47), the 
prime bracket in gij(ss') is to be replaced by zero for rij < e when used in an integral over position space, the 
limit of the integral being taken as e ~ 0. With wavefunctions constructed from one-electron spin-orbitals (15) 
it is not necessary to perform this limiting process numerically. 

The physical significance of the barious operators in (45), (46) and (47) has been discussed elsewhere (e.g. [19] ) 
and it will suffice here to name the interactions. In (45), fi(mass) is the mass-variation correction, fi(d) is the one- 
body Darwin term and f/(so) is the operator representing spin-orbit interaction of the ith electron in the field of 
the nucleus. In (46)gij(so + so') is made up of two contributions, namely spin-other-orbit interaction (terms in 
the first equation of (46) containing a factor 2) and mutual spin-orbit interaction. The former comes from the 
Breit interaction [ 19, 37], and the latter comes from reduction of the many-body generalisation of the Dirac 
equation from [37]. The interaction gij(ss') is the spin--spin interaction, and in (47)gij(css') is the spin-spin 
contact interaction, gi/(d) is the two-body Darwin term and gi/(oo')  is the orbit orbit interaction. 

We distinguish between fine structure and non-fine structure interactions. The interaction Y'i f /o r  ~-'i>j gij 
may all be written as scalar products 

V [k;0l = 0 [kl • S [kl , (48) 

where 

i for non-fine structure interactions; 

k = for spin-orbit, mutual spin-orbit and spin-other-orbit interactions; (48) 

for the spin-spin interaction. 

In (48) O[kl is an orbital angular momentum operator and S[ k] is the spin angular momentum operator. In this 
paper we consider only those interactions which can be written as vector (i.e. k = 1) or tensor forces of  degree 
k = 2 [20] to be fine structure interactions. In this we differ from some other workers: for example, Armstrong 
[21] considers the spin-spin contact interaction to be a fine structure interaction, although it is a scalar force 
(k = 0) [201. 

Since the non-fine structure interactions are scalars both in S and L, they will commute with S 2, S z, L 2 and 
L z ; they can therefore be considered in the representation t [eq. (4)]. On the other hand, the fine structure inter- 
actions only commute with j 2  and Jz ,  where J and Jz are the total angular momentum and its azimuthal corff- 
ponent respectively. It follows that a convenient representation for HBp, or more specifically, for the fine structure 
interactions is 

UM = C~SLJM. (49) 

This representation can be obtained from the representation t of (4) by means of the additional coupling 

C"~S  L J 
I C~SLJM) = ( S L M s M  L [JM) I C(3SLMsM L ~ = M s M L ' ~ "  MS ML M I C(3SLMsM L). 

In the representation (50), the matrix elements Of HBp can be written 

(50) 
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(UMIHBpI U'M') = ~5(J, J') 6(/14, M' )  
(51) 

X {~vA}r!IC(a,c)+2 ~B~t),RCx(ab, cd)+ ~-~(v, (v) )} ZaCuu, ~ (a, c) + ~ D u  U, V~'(ab, cd) + S-~ ~'(~) v v v ~ ~ UO~ NX(ab' cd , 

where the coefficients A It } n(v) are (v) and t~tt, the same as those in eq. (6), and U = tJ. The angular coefficients Cuu,, 
D(V) and ~(v) are purely algebraic. As in (6), the summations over each v contain a finite number of  terms, UU' ~UU' 
and the arguments of  the radial quantities ~', V and N will depend upon u, U and U'. The quantity lC(a, c) consists 
of  the one-body integral I(a, c) of  eq. (7) plus corrections taking into account the mass-variation and one-body 
Darwin terms, and orbit orbit interaction between valence electron and the closed shells; R~(ab, cd) is made up 
of a Slater integral Rx(ab, cd) plus corrections taking into account the effect of  the two-body non-fine structure 
interactions (47); ~" is a generalised spin-orbi t  parameter of  the type introduced by Blume and Watson [23], and 
V x and N x are magnetic integrals. Definitions of  ~', V x and N x will be given in section 3.3. 

In SUPERSTRUCTURE, the two-body non-fine structure interactions of  HBp are neglected. Thus in the present 
program, the code representing (51) contains: (i) integrals IC(a, c) taking account of  mass-variation and one-body 
Darwin corrections only; (ii) integrals R x rather than R~,. Also the coefficients EUU, in SUPERSTRUCTURE take 
account of  the two-body fine structure interactions only*. However in section 3.4 we give the two-body non-fine 
structure interactions fldl consideration, presenting complete expressions for tC(a, c) and RCx(ab, cd), so that they 
may be introduced into SUPERSTRUCTURE at a later stage. In that section we also discuss the possible effects of  
omitting those interactions. 

3.2. The one-body terms 

The term )'(mass), like the Darwin term f(d) ,  is a purely radial operator, thus contributing to F(a, c) in (51). Its 
matrix elements are derived in the conventional way [22] • 

(~b[ f(mass)[ 4)> = - ¼a2(4~1V4lq 5) : - ¼ or2 ( V2 ~b] V2~b). (52) 

We note that 

d 2 l(l+ 
1)) enl(r) Ylm(O, ~o)', (53) V2~(r, O, ~ o ) = l ( d r ~  - 

r 2 

where ~ is a one-particle wavefunction of type (15). The right-hand side of  (53) can be written in terms of the 
functions Qnl thus: 

V20 = { -  Qnl- 2Z Pnl(r)} 1Ylm(O' (54) 

Hence it follows that 

(na la l f  ma l f(mass)[ nC le S mC) = 

¼a 2 6(I a , l c) 6(ma, m c) 6(id a , t2 c) ; {Qnal a(r)+ ~-Pnala(r)} f Qnclc(r) + ~ Pele(r)}dr 
0 

(55) 

If the functions Pnl satisfy eq. (27) we can write: 

* In our formulation, the orbit-orbit interaction makes no contribution to the sum containing the V h integrals. 
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(nala#amalf(mass) l nClC #C m c) = 

oo  

_ ~ct2 3( l  a, 1 c) 6(m a ' m e) 6(/.ta, #c) f Pnala(r)(enala _ 2V( r ) ) (enq  e _ 2V(r ) )Pnctc( r )  dr. (56)  
0 

For the Darwin term it follows from the potential equation 

V2(1/r) = -47r63(r)  and the relation 63(r) = (1/47rr 2) ~(r), (57) 

that its matrix elements are 

(nalaiRarnalf(d)l nClC pCm c ) = 5(I a ' I c ) 5(/.t a ,/a c ) 8(m a ' m c) Z~ 2 Rnala(O ) Rncle(O ). (58) 

It follows from (28) that Rnala(O ) and hence the matrix element (58) is nonvanishing for s-orbitals only. 
Bringing eqs. (55) and (48) together we obtain 

(na la llama l f(mass) + f(  d)lnC lC #C m c) = 3(I a , l c) 6(/1 a , I f )  6(m a , m c) J(a, c), (59) 

where 

f 2Z 
J(a ,c) :  ¼et 2 [ZRa(O) Rc(O)- f dr {Qnala(r)+TPnala(r)} l Qnctc(r)+-~-Pnclc(r)} 1. (60) 

0 

We note that the algebraic factor in (59) is the same as that in the expression (17) for the matrix elements of  the 
non-relativistic one-body terms. 

r(v) The coefficients CUU, give the angular dependence of  terms which behave like the spin-orbit interaction; they 
are constructed from the angular parts of  the matrix elements off i (so) :  

<a[f/(so)lc) = 5(I a , l c) 6(/~ a + m a , #c +m c) {6(#a, S )  #ama + t2g(#a, #c +_ 1) 
(61) 

x ,/(t a - ma _ ~a +{) (~ +m a +/+ ~)}~, 

where ~nu is the spin-orbi t  parameter obtained by taking into account the field of  the nucleus only: 

~" nu(a, e) = ~2 f dr enala(r) pneF(r ) Z/r 3. (62) 
0 

,~(v) The coefficients t.UU, are obtained from 

C n" 
sML M S M L M ~ M  S, M L, M 

Ms,My 

X ~ C  ll "'" IN+l  ;~S L C "'" iN+I ;p ~ L /u ~ . (63) 
IX,bI~ • r t ¢ 

mm~ ~u+tmN+l, MsML ~' ?"~u+~mu+1; ~SML\LP =1&(s°)~' 

In (63) 

N 
<U "p~=l fP(so) u~ = (-1)q+q'(nqlqpqmqlf(so)lnq,lq,iRq,mq,) (64) 

if the Slater states u and u'  differ in one set of  one-electron quantum numbers, namely the set q in u and the set 
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q m u . Also 

+p=~ifp(SO) U)= ~q(nqlq/~qrnqlf(so)lnqlq~tqmq) (65) 

for diagonal matrix elements. In (64) and (65) the element (nl~mlf (so) ln ' f~ 'm')  is obtained from (61). In the 
summations over u and u', all coefficients of each spin-orbit parameter ~'nu(a, c) are added together to give the 
coefficients "@) The generalised spin-orbit parameter in (51) is discussed in section 3.3. L.UU,. 

3.3. The two-body fine structure interactions 

Blume and Watson [23] showed that mutual spin orbit and spin-other-orbit interactions gi,-(so + so') between 
each valence electron and the closed shells behave like a one-body spin _.orbit interaction. Thus these effects can 
be absorbed into the s!~in-orbit parameter to give a generalised spin-orbit parameter: 

f (nala, nCl c) = fnu(nala, nClC)- ~ 8 ( 2 1 b + l ) N O ( a b ,  eb) ~ '  - ~ '  - ~ ' ,  (66) 
nbl b (1) (2) (3) 

where 

~ '  12 ~, (l.~b){,a(la+l)+X(X+l)_lb(lb+l)}[Clao-~.lb]2 = - {YX-l (ab,  bc) v k - l ( b a ,  ab)}, (67) 
(1) nbl b X'1 2la(la+l)  O0 

(la +lb + l ) 
~ ' = - - 6  ~ '  ~ (X+la+lb+l ) (X  lb+la+l) (X la+lb+I) ( la+l  b X÷I) 

(2) nbl b X=l 4la(la+ l)(X+ 1) 

I @ l  a • 1 l hI2 
X {N x l(ab, bc) +NX-l(ba, cb)} , 

0 0 0 J  
(68) 

~ '  = - 6  ~ '  (la~ b) la(la + l )+ X(X + l)--  lb(lb + l)  Ff"%la x lb '2  

(3) nbl b x=l 21a(la+l) [ ~ ' J 0  00 J 
X { [la(l a + 1) lb(l b + 1) - X(X + 1)] [XNX(ab, bc) - (N + l)NX-2(ba, cb)] 

- [lb (l b + 1) -- la(l a + 1) - X(X + 1)] [XNX(ba, cb ) -  (?t + 1 ) N  x 2(ab, bc)] }. (69) 

The integrals V x and N x are defined by 

~ 7k 

f f 
0 0 r> 

(70) 

f id .(,, r,)Rc(.,)'.(r,). 
o 0 

(71) 
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where e is the Heaviside step function defined by 

I, r 1 >/r2; 
e(r I - r2) = (72) 

O, r 1 < r 2. 

In eqs. (67), (68) and (69) the summation over nbl b includes all the orbitals in the closed shells common to all 
configurations of the set chosen for the approximation. The prime on each £ over b (that is nbl b) indicates that 
only such contributions are included which arise when one electron is in the common core and the other is in the 
valence shell. Eqs. (67) to (69) are more general than the corresponding equations of Blume and Watson [23] in 
that they are valid for off-diagonal elements. The £(i) have been expressed in terms of Clebsch-Gordan coeffi- 
cients instead of 3j-symbols; the 6/'-symbols which appear in Blume and Watson's original expressions have been 
eliminated with the help of the formulae given by Brink and Satchier ([12], table 4). 

It remains to consider those fine structure interactions which do not behave like a one-body spin orbit interac- 
tion. They have been discussed by Jones [6] ; they consist of the mutual spin--orbit, spin-other-orbit and spin-- 
spin interactions between valence electrons*. We write (labelling particles by 1 and 2) 

g12(so +so') = 2V(/~ + IA/~ + 1/(22) + I/(/32) + V(23) , (73) 

where the operators on the right-hand side of (73) are defined in Appendix A and they do not correspond to the 
operators IA1), IA2) and IA3) defined by Blume and Watson [23]. The matrix elements of these operators are 
given by 

K 1 ~ ( -1)  x ma mb[(~.+ 1)(X +2)(2X+3)1 1 / 2  

h=0 

X+I X+I 1 Ca+l( lama, lCmC) Cx+l(lbmb, lCmC) VX( ab cd), 
"X ~rna_rnC mb--m d g 

(74) 

(ab[V(12)2[cd) = ~ ( -1)  k ma m b (I- 1 -11/= X=0 ~ [ ~ J  [(X+la+Ic+2)(X lC+la+l)(~" '~+lC+l) ( la-X+lC)] l= 

C m  x+I dx(iam a lCmC) cx(lbm b ldmd) K1 
X 1 × 

a m c mb m d • 

- [ (x+lb+ld+2)(x-lb+ld+l)(x+lb4(2x+ 1)(X+2)ld+l)(lb--x+ld)(2X+5)] 1/2 

X+2 X+I 1 t 
X ~ . J m a  m e mb_m d K dx(lbmb' lama) Cx+z'(lama' lCmC) K2 NX(ab' cd), (75) 

* Spin-spin interactions between valence electrons and closed shells vanish provided the closed shells are unpolarised. 
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(ablV(13)lcd)= ~ ( - 1 )  x-ma m b [X(2X+I)] '/2 
° ~=o k 4 ( X ;  ~J [ff(la+ l)- l~(l~+ 1) X(X+ 1)] 

C X X 1 X _ cx(lam a , ICm c) cx(Ibm b , ldm d) K 1 
ma--m c m b m d K 

f(2X +5)(X + 3)_] 4(X+2) J [Ib(P+l) l a ( l a+ l ) - (X+2) (X+3) ]  

/ ' %  X+2 X+2 1 
X ~ . Jma_m c m b  md K cx+2(lama' lCmC) ca+2(lbmb' ldmd) K2 NX(ab' cd), (76) 

where 

1 1 [ dq,  
K 1=2 8(/1 b g ) c/.ta / / c s  

'- ,b  1 ,d ~* ]' 
+ 28(.'~, s ) C ~ d  

1 

K 2=2 8(S ,U ) d//b ud/ /b  +28(~tb' ud) c~ta uc//a ' K =ma--mC+mb--md. 

(77) 

The coefficients ca, which occur in eqs, (74), (75) and (76), have been introduced in (18) and are defined in (A9); 
the coefficient d x in (75), which will be defined in (A12), is introduced here: 

+ , C l  l' X+I c l I ' X  dx(lm, l'm') = {(2l 1)(2l + 1)} 1/2 (78) 
m' --m m'--m 0 0 0 

Turning to the spin-spin interaction gij(ss'), the expression given by Jones [6] for the matrix elements of the 
spin-spin interaction can easily be rewritten in terms of the coefficients Cx: 

3 q l  1 2el 11C1 1½ 
(ablgl2(SS')lccl) = _ ~ a-laC i . lb_l,l  d --It  11 c l.fl--l,l c i aa ~ 1 . 1  d l,l b 11 d I Jb 

q [(2x + 5),.? ~ X 2 ( - 1 )  x ma-mb X+2 k 1 cx+2(lama,lCmC) cx(lbmb lama)[ (2X)! J Na(ab'cd)" (79) 
a=0 a--mC mb--m d 11 ' 

The expressions on the right-hand side of (74), (75), (76) and (79) are all in the form of an algebraic coefficient 
nmltiplied by a radial integral. It follows that these expressions for the matrix elements are particularly suitable 
for the calculation of the coefficients D (v) and E(~): these coefficients are calculated from the uncoupled two- 
electron matrix elements (74), (75), (76) and (79) using similar techniques to those employed in the calculation 
of Btt, and CUU,. 

3.4. The two-body non-fl'ne-structure interactions 

3.4.1. The matrix elements 
In this section we consider the matrix elements of the terms defined in the set ofeqs. (47), that is the two-body 

Darwin, the spin-spin contact and the orbit-orbit terms. 
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The matrix elements of  the two-body Darwin term follow straight forwardly from the expression given by 
Jones [24]: 

(na la laa m a ' nb lb lab mb [g l 2( d )[ nC le laC m c , nd ld lad m d) = 
(80) 

8 ( S ,  lac) 6 (lab, lad) 8 (m a + m b , m c + m d) ~ (-- 1 ) ma- ma ca(lain a , lCm c ) c~,(l b m b , ldm d ) (2 X + 1 ) X 2 (abcd), 
a 

where 

X 2 (abcd) = Ot 2 f dr (1/r 2) P a p ( r )  Pnblb(r) Pncle(r ) enala(r). (81) 
0 

The algebraic factor in (80) differs by a factor of  (2~. + 1) from that involved in the Coulomb interaction [see 
eq. (18)].  Hence one may take into account the two-body Darwin term by adding to each Slater integral 
Ra(ab , cd) the correction (2X + 1) X2(abcd ). 

Turning to the spin-spin contact term, we note that De Shalit and Talmi [20] have shown that the matrix 
element o f -  ~ rr s(i)" s( j )83(r#)  is equal to that of  47r63 (r#-) provided that the wavefunction is antisymmetric 
with respect to interchange of  the ith and j th electrons. Hence, since our wavefunctions are totally antisymmetric 
we may write 

gi/(css') = 2gi/(d ), that is gi/(css') +gi/(d) = -g i / (d )  for all i , /  (i --/=j). (82) 

It thus follows from (82) that we should add a correction 2(2~. + 1) X2(ab cd) to each Slater integral Rx(ab, cd) 
in order to take into account the spin-spin contact interaction. This was first pointed out by Feneuille [25]. 

Finally we consider the orbit-orbit interaction. Various workers [24, 26 -29 ]  have expressed the orb i t -orb i t  
interaction in terms of  irreducible tensors, and from this, have derived various matrix elements. In Appendix B 
we give an expression for g12(oo') in terms of spherical tensor operators; the derivation of its matrix elements 
is discussed there also. These matrix elements are given by 

(na la laa m a ' nb l b lab m b Ig12( oo')l nC lC laC m c , nd ld lad m d) = 

6(laa, lac) 6(la b, lad) 8(m a + m b, m e + m d) ~ (1 - 8(X, 0))(-- 1) ma- md cx (lam a , IC m c) cx (lb m b , ld m d) Zx (ab, cd) 
h 

- 2 ~ ( -  1) ma-ma da(lam a, lCm e) dh(lbm b, ldmd)c?{ a(ab, cd), 
a=0 

(83) 

where 

Za(ab , ca/) = - ~(~ + 1) [ r  a+l (ab, cd) - Ta- l (ab ,  ca')] + [la(l a + 1) - lC(l c + 1) - X(~, + 1)] 

X [ua+l(ab, ca r) - ua - l (ab ,  ab)] + [lb(1 b + 1)-- ld(Id+ 1) -- X(X+ 1)] [ua+l(ba, dc) V a l(ba, dc)] 

+ { [la(la+ 1 ) -  lC(lC+ 1) - X(X + 1)] [lb(Ib+ 1) - - ld ( ld+  1 ) -  X(~. + 1)] }~/= 

- - (X+3)  ~.--2 [N X 2(ab, cd )_Na_2(ba ,  dc)]} ' X (~.+1)(2X+3) [Na(ab'cd)+Na(ba'dc)]  + X(2~.-1)  

and 

(84) 
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_ 1 
c~X(ab, cd) ( X + I ) ( X + 2 )  {(la+lc+X+2)(IC l a + X + l )  

X( la - l c+~+l ) ( la+l  c-X)( l  b + l d + X + 2 ) ( l  d l b + X + l ) ( l  b - l f l + X + l ) ( l b + l  d X)} l/ :  

~ r E 
X~0¢2 0 f 0 f Pa ( r l )P b ( r 2 )uP c ( r l )P d ( r 2 )  drl dr2" 

In (85), the integrals T x and U x were first defined by Beck [ 2 8 ]  : 

rX (pnclC(rl)) ~ ./Pndld(r2)'~, 
_ fr, z fr2dr2Pn~la(rl)Pblb(r2)r~lO~Tf - -- "~  \ r2 j TX(ab, cd) 2X+ 1 

\ rl 0 0 

(85) 

(86) 

.2 f UX(ab, cd) - 2(2~+ 1) f drl dr2P'ala(rl)Pnblb(r2) 
0 0 

1 rE O ['Pnald(re)X~ 
×r~ r~>+l [(~--l)e(rl--r2)--(~+2)e(r2--rl)] Pncle(rl)~r 2 ~ ~ -j. (87) 

It is clear from (83) that the part of  the orbi t -orbi t  interaction involving Z a has the same angular dependence as 
that of  the interelectron Coulomb interaction 2/rij, and thus it may be absorbed into the Slater integrals as a shield- 
ing term. Hence, gathering together our results for the two-body Darwin, spin-spin contact and orbit-orbit terms 
we obtain the following expression for the relativistically corrected Slater integral: 

gCx(ab, cd) = R~(ab, cd) + (2X + 1) X2(ab cd) + (1 - 8(X, 0)) Z~(ab, cd). (88) 

In SUPERSTRUCTURE we do not take account of  the two-body non-fine-structure terms and thus in that 
program we have 

RCx(ab, cd) = Rx(ab, cd). (89) 

The second term in (83) can be considered in two separate parts: 
(i) interactions between valence electrons. Since the integral 9{ a may be expressed in terms of the magnetic 

~,(v) integrals N x, the algebraic factor may be absorbed into the factor L88 , .  
(ii) interactions between valence electrons and closed shells. This behaves like a one-body interaction and ex- 

pressions for it have been derived by Beck [28] and by Walker [29] : since the last term in (83) comes from the 
operator W 3 (see Appendix B) it can be shown that 

~ '  (ablW31bc)= O, (90) 
b 

~ '  [(abl W3 lbc) + (bal I413 [cb)] = 8(I a, 1 c) 8(,u a , U c) 8(rn a , m c) ~(a, c), 
b 

(91) 

where 
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~(a, c) = (1 - 6(I b, 0))(1 -- 6(l e, 0)) la+lb+lx=l ~ X(X+I)I [ c l £  X--l lb] 2 0  0 

× r~(la+lb+x+l)(la+X_lb)(lb+X la)(lb+la X+I).tq [ Nx l(ab ,bc)+Nx_l(ba,cb)] ' (92) 
k (21 b + 1) J 

where the primes on the summations have the same meaning as in eqs. (66) to (69). Eqs. (89) and (90) agree with 
the corresponding expressions given by Beck ([28], eq. (A-20)).  Comparing the right-hand sides of eqs. (91) and 
(17) it can be seen that the interaction W 3 between a valence electron and closed shells has the same angular 
dependence as the non-relativistic one-body terms. Hence combining the results of eqs. (17), (59) and (90) we 
finally obtain an expression for the relativistically corrected one-body integral IC(a, c) 

IC(a, e) = I(a, c) + J(a, c) + ~(a, c). (93) 

We could have absorbed the whole of the orbit orbit interaction between valence electron andclosed shells into a 
one-body term like ~(a, c). However, we do not do this because the matrix elements of IV 1 , W 2 and W 4 can be 
absorbed as a correction to the Slater integrals R x [eq. (88)]. 

In SUPERSTRUCTURE, orbit -orbit interaction is omitted and thus in that program 

IC(a, e) = I(a, c) + J(a, e). (94) 

In (93) and (94), J(a, c) and ~(a, c) are of order ~2 with respect to the non-relativistic term l(a. c). 

3.4.2. Discussion 
Since the two-body non-fine structure interactions have been omitted from SUPERSTRUCTURE, it is neces- 

sary to discuss their effects and to consider cases when they may be important. 
The two-body non-fine structure interactions will affect ionisation potentials, total energies and relative term 

separations. We would expect from the work of Walker [29] that the effect on ionisation potentials may be quite 
marked particularly for systems with medium to high Z. Jones [30] has recently discussed the application of 
SUPERSTRUCTURE to highly-ionised helium-like ions. He noted that SUPERSTRUCTURE tended to over- 
estimate the relativistic correction to the ls 2 1 S  0 ionisation potentials in Ca XIX and Fe XXV, as compared 
with full Breit Pauli calculations [31 ]. One might expect that inclusion of the two-body non-fine structure inter- 
actions would correct this tendency. However, relativistically-corrected transition energies from SUPERSTRUCTURE 
show much more satisfactory agreement with experiment ]5] and with theoretical results which take into account 
the whole Breit-Pauli hamiltonian [30]. 

It is worth noting that the two-body non-fine structure interactions (47) may be considerably more sensitive 
to correlation effects than the one-body relativistic terms. Consider, for example the Darwin terms containing 
63(r,,) and 63(r,). Cooper and Martin [32] and Bethe and Salpeter [19] have made estimates of the expectation 
values (63 (rij)) and (¢53 (ri)) for simple two- and three-electron systems. The following two points emerge from 
their analyses: 

(i) Generally, the contribution of spin spin contact and two-body Darwin terms is quite small compared with 
the one-body relativistic corrections. This does not mean that these two-body terms are always unimportant, but 
it helps to explain why the results of Jones [5] mentioned above were so satisfactory even though he only in- 
cluded the one-body relativistic operators in his calculations. 

(ii) The expectation values of 63(rij) are much more sensitive to correlation effects than those of 63(ri). This 
is what one would expect physically. In general, it was found that single configuration Hartree-Fock functions 
overestimate 63(ri/) rather badly. 

Ufford and Callen [33] have argued that orbit orbit interaction may be highly sensitive to polarisation effects: 
however, no thorough numerical study of this has yet been made. Furthermore the relative importance of orbit-orbit 
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interaction and correlation effects has been studied: Rajnak and Wybourne [34] showed that electrostatic configu- 
ration interaction in I n configurations can give rise to a term in the eigenenergy of  the form L(L + 1)c~, whereas 
Yanagawa [35] noted that orbit-orbit interaction can also give rise to a similar term*. Wybourne [36] inferred 
from the observed sign and magnitude o f  the adjustable parameter c~ that configuration interaction is dominant in 
d n spectra. 

In conclusion, it would appear that neglect of  the two-body non-fine structure interactions is justified unless 
one is specifically interested in ionisation potentials. For systems of  medium Z, (Z ~ 26) these interactions do not 
appear to affect transition.energies significantly. If one does take account of  these interactions in energy level cal- 
culations attention should be paid to the sensitivity of their matrix elements to correlation effects. 

3.5. Calculation of  energies and intermediate-couplbtg wave/hnctions: accuraqv of the Breit Pauli approximation 

The matrix (CI3SLJMIHBpI C'JS'L'Z443, can be constructed with the help of the methods developed in sections 
2 and 3. This matrix is then diagonalised: 

(AJ[ C~SLJ) (CflSLJMIHBp[ C'YS'L'JM) (C',G'S'L 'JM] A'J) = (5 ~/,,( AJIHBpI A'J>. (95) 

The two summations ] ) ( I on the left-hand side of  (95) run over C~SL and over C'~'S'L'. With the same arguments 
in mind that lead to (40) we introduce the alternate notation 

bJ(A, C~SL) = (A J] C~SLJ). (96) 

In general, (95) corresponds to the first stage of  application of  the variational principle (1), in which the off'- 
diagonal elements of  the matrix H (= HBp in this case) are reduced to zero by finding a suitable set of  mixing 
coefficients (C~SLI A J). In a single configuration approximation the diagonalisation (95) can be thought of  as an 
application of  degenerate perturbation theory, using as zero-order hamiltonian H o = ~ihi [where h i was defined 
in (2)]. With this choice o f H  o there will be two perturbations, namely the inter-electron Coulomb interaction 
and Hrc (which comprises the relativistic correction terms of  the Breit Pauli hamiltonian): since these two per- 
turbations have different Z-dependences, double perturbation theory must be used (for a fuller discussion see 
ref. [37] ). Returning to the general multi-configuration case, it should be noted that we do not apply the varia 
tional principle (1) any further than the diagonalisation (95), since the radial functions used are non-relativistic 
and therefore take no account whatever of  relativistic effects: it thus would be incorrect to vary the adjusting 
parameters )k I to obtain a minimum in the intermediate-coupling energies. 

According to Betbe and Salpeter ([19] ,  section 38] the Breit Pauli hamiltonian should only be treated in 
first order of  perturbation theory. Ermolaev and Jones [38] have pointed out that this restriction does not 
necessarily apply to the fine structure interactions within a configuration, and they show that the diagonalisation 
(95) is approximately equivalent to a second order perturbation treatment of  these interactions. 

We complete this section with a few comments on the accuracy of the Breit Pauli approximation: 
(i) The Breit Pauli approximation is valid subject to the condition 

0~273 ~< 1 (97) 
L, e f  f --~ , 

where Zef f is the effective charge seen by any one electron in the system (that is, (97) should hold for each elec- 
tron, but Zef f will of course vary from one electron to another). The exact value of Z at which the Breit--Pauli 
method breaks down is not clearly defined: Ermolaev and Jones [31 ] have performed Breit Pauli calculations 
in the helium sequence up to Z = 42 and they suggest that the method is valid up to Z = 30 and may be valid well 
beyond this value. However Grant [39] has demonstrated that the method breaks down for heavy atoms 
(Z ~ 80). as one would expect by examining the criterion (97) for the case of  inner shell electrons of  such sys- 
tems. 

* This term comes from the operator W3, which was the only part of the orbit-orbit interaction that Yanagawa [35] studied. 



w. Eissner et al., Atomic structures and radiative data 291 

(ii) Ermolaev and Jones [37] have shown that provided the expectation values Of HBp are evaluated between 
exact non-relativistic functions, results will be obtained which agree with the corresponding relativistic Z expan- 
sion (Doyle [40]) to order ~2Z3 Ry. For complex atoms it is impossible to obtain exact wavefunctions so the 
best variational wavefunctions available should be used. It is also appropriate to mention at this point the effect 
of poor non-relativistic wavefunctions and energies upon finestructure splittings. These manifest themselves in 
two ways: 

(a) The Blume and Watson spin-orbit parameter of eq. (66) assume that the closed shells are undistorted. In 
practice the closes shells are po!arised to some extent by the valence electrons, with the consequence that the 
spin-orbit parameter f of  (66) may differ considerably from the spin-orbit parameter deduced from experiment. 
One might expect that the discrepancy between calculated and "observed" spin orbit parameters will increase 
as one proceeds to more highly-excited states since the polarisation potential produced by the closed core is a 
long range force. This indeed does appear to be the case: for example, the calculated spin-orbit parameter 
~'3d (= ~"(3d, 3d)) for the sodium sequence is in far worse agreement with the experimental value than the corre- 
,sponding ~'3p in the same sequence [50, 51 ]. 

(b) When spin -orbit interaction causes breakdown of LS-coupling, the fine structure splittings may be sensitive 
to non-relativistic term separations. For example, in the helium sequence, the fine structure splittings of the 
ls2p 3p state can be considerably affected by the "singlet--triplet" interaction between ls2p 3P 1 and ls2p 1P 1 
[38]. Since the diagonalisation (95) is approximately equivalent to second order perturbation theory, with cal- 
culated non-relativistic term separation AE = E(3p) E(1p), errors in AE may strongly affect the fine-structure 
splittings. We mention two further examples of this type of effect. Jones [6] noted that certain fine structure 
intervals in Fe V1 are inverted, due mainly to second-order spin-orbit interaction. However, this inversion did 
not appear when rather crude calculated energies were used: Jones was able to partially produce these inversions 
when he semi-empirically adjusted the non-relativistic separatigns to approximate more closely to the observed 
separations between the centres of gravity of the terms. An example which clearly shows the inter-dependence of 
intermediate-coupling effects and configuration-mixing effects is given by Nussbaumer [15]. 

4. Radiative data 

This section divides into two main parts. The first, more fundamental, part considers the calculation of transi- 
tion probability data, whereas the second is concerned with the application of this data to the calculation of 
cascade coefficients. 

4.1. Transition probabilities and J-values 

The program can calculate radiative data for electric dipole and quadrupole transitions and also for magnetic 
dipole transitions. 

4.1.1. Electric multipole data 
For electric multipole radiation of multipolarity 2 k the transition probabilities ~ [k] for spontaneous emission 

can be expressed in terms of line strengths S[ k] in the following way: 

~4[,k. ] = G [k] aZk+l(Ei E )2k+l (1/gi) s[k] (i, i'), (98) i i  i' 

where i and i' are the initial and final states respectively, gi is the statistical weight of the initial state and G[ k] is 
a numerical factor. In the cases of electric dipole and quadrupole radiation G[ k] takes on the values 

G [1] = 1/3, G [2] = 1/160. (99) 

In eq. (98), if energies E are expressed in Rydbergs Ry and S[ k] is expressed in powers of Bohr radii a0, ~4 },~] 
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will be given in units inverse to the Rydberg time r 0 = 2ao/(eec ) = h/Ry = 4.839 × 10 17 sec, where c is the speed 
of  light. Thus r 0 is the time taken for the electron in the ground state of  hydrogen to traverse the diameter of  its 
orbit; ½r 0 is often referred to as "atomic unit of  time". Inserting modern values of  c~ and r 0 (deduced from the 
atomic constants quoted by Kuhn [41] ), we can transform sd back to a dimensioned expression A ; keeping E 
and S dimensionless as before, we obtain transition probabilities 

A (,1.l = 2.6774 × 109 sec 1 × (E i El,)3 1 s i l l  (i, i'), (100) 
t i gi 

A[,2I =2 .6733X 103sec 1 X ( E  i Ei,) 5 i3121(i , i , ) .  (101) 
t t gi 

Alternatively, especially in the context of  absorption and dispersion, radiative transitions may be described by 
the oscillator strength f for absorption or emission; one can also use the (gf)-value: 

E i - 
Ei 's[ l l ( i , i ' ) ,  E i, < E  i. (102) (gf)ii' = (gf)i'i =gilfi'il =gi'lfii'[, fi)'l] -gi'l 3 

The atomic transition properties in both A and f a re  carried through the line strenght siX], which like (gf) is sym- 
metric in the initial and final states i' and i. For radiation of  a given multipolarity 2 k, S[ k] (i, i') can be constructed 
from matrix elements of  the k ' th moment of  the charge distribution; in our definition expressing A and f i n  terms 
of  S, this quantity will be purely geometric, without factors a (i.e. not involving e 2 in the case ofunreduced units): 

N 

S [k] (i, i.') = S [kl (i', i) = ~ I(ilP !kl 1i,)12, where p[k} = b[klR [kl = b [kl ~ r [kl (103, 104) 
~: p=l p ' 

In (103) we have summed over the 2k + 1 linearly independent tensorial space directions of multipole polarisation. 
We expand the one-particle vectors rp in terms of spherical tensor operators C(p): 

(rp)[ k] = r kp C~ k] (p), (105) 

using the notation of (20). The coefficient b[II has been given in TAS, and b[ 21 has been given by Garstang [42] : 

b [11 = 1, b [2] = x / ~ .  (106) 

We now turn to particular coupling schemes. Considering first the LS-coupling representation t of  eq. (4), we 
apply the Wigner Eckart theorem [43] to the matrix element on the right of  (103), obtaining 

1) L' L L'  
(tMsMI IR~ k] ItM'sML) 6(Ms,Ms)  ( M~.{ ~. 

k 
' ' ' = ' ( t l I R  [ k l l l t ' ) ,  (107) 

where 

(tllR [k] lit') = (C~SL tIR [k] IIC'~' SL') = ~ (Cf3SL IIC [kl (7, 7')llC'f3'SL ') Sk(7, 3"), (108) 
"7,3, 

in which the muttipole radial integrals s k are defined by 

Sk(3", 3") = f dr P.r(r) rk p~'(r) (109) 
0 

in the length formulation. If we had chosen the velocity formulation in (103) instead, this would be equivalent to 
just replacing r by 
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2 I d + l ' ( l ' + l ) 2 - l ( l + l )  1 
E ' - E  r 

in (109) for the dipole case k = 1. On the right-hand side of  (108) 3' and 3" stand for orbitals nl and n' f  respectively, 
and there is an implied summation over repeated indices. The Ck(3', 3") in (108) is related to the R [kl of (1104). The 
arguments 3' and 3" imply that the matrix elements of  C k are taken between one-particle coordinate functions 
labelled by 3' and 3". However, as in the c~culation of  the structure angular coefficients A (v), B (v) etc., the purely 
algebraic coefficients (tll Ck(7, 3")11t'> can be calculated without reference to coordinate functions. Using the Slater 
state expansion technique, the following expression is obtained for the matrix element on the left of  (107): 

2 (ulR [kl lu'), <C~SLMsMLIRIk]Ic'~'SL'MsML'>=u'u' ~ / ~ l m l  t~NmN; MSML--I~lml" 'I~'Nm'N; MsML' (110) 

where 

(ulR [k] lu') = ( -  1) q+q' (nqlqtlqmqlr [k] Inq,lq,t~q,mq,), (111) 

in cases when the Slater states u and u' differ in one set of  one-electron quantum numbers, namely the sets q and 
q', and for diagonal elements: 

N 
(ulR [k] lu) = ~ (nolotlamolr[k] [nqlqpqmq). (112) 

q=l -' " ~ -~ 

Diagonal elements (112) only occur for k > 1 : for dipole transitions (k = 1) the initial and final states must differ 
in at least one set of  one-electron quantum numbers.  In eqs. (111) and (112) the one-electron matrix elements 
are given by 

(nll~mlr! k] In'l'la'm') = 6(K, m - m') 6(/a,/~') sk(nl , n'l') ( -  1) k- m' Ck(lm, I'm'). (113) 

t t ~ l  r a ~ t ~  l The reduced radiative matrix elements (t[[R[ k] i[t') are obtained from (tMsML[R[k][ ~vlSiViL~ oy inverting eq. (107); % 
the expansion coefficients (t[C [k] (3", 3")] t') are obtained by collecting together the coefficients of  each radial 
integral Sk(3', 3") occurring in the summation on the right of  (108). 

In the case of  configuration mixing in LS-coupling, the states i = FSL and i' = F'SL' are expanded according 
to (5): 

s[kl(i,i') = ~ ](ilt)(tMsMLlR!kllt'M'sM'L)(t'li')[ 2, (114) 
M S ,M' s 
M L ,M' L 

where the quantities (il t) are the configuration mixing coefficients which were discussed in section 2.4. Substitut- 
ing (105) into (112), and noting that the coefficients (iLt) are independent ofMsM L it follows that the summa- 
tions on the right-hand side of  (112) can be performed giving 

S [k] (FSL, F'S'L') = (2S + 1) 6(S, S')[(FSLIC~SL)(C~SL lIP [k] [I C'~'SL')(C'~'SL'I F'SL')I 2 . (115) 

In order to transform the line strengths into a suitable representation for intermediate-coupling calculations, the 
following relation i~ used: 

(C[3SLJ, IR[k]I[C'fS'L'J')=(-1)S+L'+J+k[(2J+ I)(2J' + I)]I/~ 6(C(3, C'f)6(S,S') {L, J ~}(C~SLIIR[kl[,c~SL'). 
L' (116) 

* In the program both computation time and the size of the file of algebraic coefficients <til C[ k] (% 3/)11 t'> is reduced by exploR- 
ing in eq. (108) the relation (dUll C[ k] II aL) = (-1)L-L'(~£It C[ k] II a'L'). 
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Eq. (116) was obtained from eq. (44b) of  ref. 143]. The reduced matrix element of  (1 t 6) is now substituted into 
the intermediate-coupling analogue of (113) giving 

S [k] (A J, A 'J ' )  = I(AJI C[3SLJ) (C~SLJIIP [k] II c'9's 'L'J ') <C'fS'L 'J '[ A'J')I 2 (117) 

4.1.2. Mag77etic dipole transition probabilities 
We define the magnetic dipole line strength by 

Sin(i, i') = I(ilPli')[ 2, 
N 

where P m =  ~ (l(p) +2s(p)).  
p=l 

(118, 119) 

The magnetic dipole transition probability is defined thus: 

O~ 2 1 ., 
-e~ m= (E i Ei,) 3 Sm(i , l  ), (120) i'i 12 gi 

in the same units as eq. (98). Inserting values o f ~  and r as in section 4.1.1 we obtain 

1 
A ~  = 3.5644 × l04 sec 1 (/?i--El ')  3 gi Sm(i' i'). (121) 

Shortley [44] has given closed expressions for Sin(i, i') using a representation C~SLJM, in which intermediate 
coupling between different terms SL was neglected. This LS-coupling line strength can be divided into three 
cases: 

sLS(c~SLJ, C, fS ,L , j )=6(Cf3SL,  C ' , f S , L , ) j ( j + I ) ( 2 J + I ) f l + J ( J + I ) + S ( S + I )  L(L + 1)] z j ,  i )  -j , for =J ; (122)  

eq.(122) does not apply for J =  0, when sLS ( j  = 0 -+J '  = 0) vanishes. 

sLS(c~SLJ, '~' , , = C ( , S L J + I )  8(CI3SL, C'{3'S'L') (J S + L + I ) ( J + S - L + I ) ( J + S + L + 2 ) ( S + L - J )  
4(J+ 1) 

for J ' = J + l .  (123) 

The third case, namely J '  = J - 1, is easily obtained from (t 23), with the help of  the symmetry of  the line 
IC strength. The intermediate coupling line strength S m (A J, A'J') may be obtained with the help of the transforma- 

tion on the left-hand side of  (95). We finally obtain 

ic G S m (A J, A'J')  = [( AJb C~SLJ) (C~SLJ' I A'J ')i 2 sLS(c~SLJ,  C~SLJ') 
C3SL 

= ~ KAJICt3SLJM) [SLmS(Cf3SLJ, C~SLJ')] 1,2 (C(3SLJ,IA,j,)I2, 
C~SL 

LS which corresponds to a transformation of the positive square root of  the line strengths S m . 

(124) 

4.1.3. Selection rules in intermediate coupling 
The intermediate-coupling selection rules for radiation are somewhat different from the corresponding LS- 

coupling selection rules. Knowledge of these roles will help users of  SUPERSTRUCTURE or similar programs to 
interpret their results. We note that the selection rules will depend upon (a) the type of transition (electric dipole 
etc.), (b) the type of fine structure terms which are included in the hamiltonian when calculating the intermediate 
coupling wavefunctions. The selection rules for radiative transitions in LS-coupling are well known (TAS, chapter 9). 
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With regard to point (b), we note that the spin-spin interaction can couple terms SL and S'L' according to 

[L-L'[~< 2 and IS-S'[~< I (125) 

([6],  section 4), whereas the spin orbit, mutual spin-orbit and spin-other-orbit interactions couple terms satis- 
fying 

IL-- L'I <<, I and [S-  S'.[ <~ I. (126) 

The Coulomb interaction and the non-fine structure interactions of the Breit Pauli hamiltonian can only couple 
terms with the same SL. 

In the remainder of this sub-section we assume that the hamiltonian used in the atomic structure calculation 
contains all the fine structure interactions so that the coupling rules represented by the inequalities (125) apply 
[these rules also cover all cases included in the inequalities (126)]. In addition it should be noted that the parity 
selection rules are always the same as in the SL-coupling case, and we therefore make no further mention of parity 
selection rules. In all cases, transitions J = 0 to J '  = 0 are not allowed. 

Electric-dipole transitions. In LS-coupling the selection rules are 

S=S' ,  I L - L ' [ ~ < I  and I J - J ' [ ~ < l .  (127) 

The rules (125) apply when working out the mixing coefficients (C~SLJI2xJ), that is, ifSL is the term making the 
dominant contribution to an eigenvector i AJ), the other components S'L' of the eigenvector are restricted by 
(125). In practice, the fine structure interactions are only likely to couple appreciably those terms which belong 
to the same configuration. Applying (125) and (127) to (117) we obtain the intermediate-coupling selection 
rules 

[ I S - - S ' I ~ 4 ,  [ L - L ' [ ~ 5  and [J J ' [<~ l .  I (128) 

Electric-quadrupole transitions. In LS-coupling the selection rules are 

[IS S ' I=0 ,  IL--L ' I~<2 and I J - J ' l < ~ 2 ,  ] (129) 

whereas in our intermediate-coupling case we have 

LL-L'I<-7, IS-S '1~<4 and I J - J ' [ ~ < 2 .  I (130) 

Magnetic dipole transitions. In the absence of intermediate coupling, the selection rules for magnetic dipole radia- 
tion are given by the Kronecker delta on the right-hand sides of eqs. (122) and (123). If follows from (124) that 
in intermediate coupling the selection rules are 

I L - L ' I ~ < 4 ,  iS-S '1~<4 and I J - J ' l ~ < l .  (131) 

4.1.4. Accuracy of radiative data 
We mention here two sources of error in the intermediate-coupling radiative data: 
(i) the transition probabilities A IX] and A m can be affected by errors in the calculated energy differences 

E i - Ei,. They can be corrected with the help of the observed wavelengths in the usual way. 
(ii) intercombination line strengths may be unreliable if  non-relativistic term separations between terms coupled 

by fine structure interactions are poor, where the line strength amplitude (C~SLJIIR[kl IIC'[J'S'L'J') connecting 
those terms dominates the intermediate-coupling line strength amplitude. Poor non-relativistic term separations 
lead to poor mixing coefficients ( C ~ S L J T A J )  in (117) or (124) thus yielding unreliable line strengths. For example, 
the transition probability for 3s3p 1p -+ 3s3p 3p in Mg I produced by SUPERSTRUCTURE contains an error of 
30% when the_non-relativistic energy separation of these two terms is in error by 15% [67]. This state of affairs 
is similar to that prevailing in the calculation of fine structure splittings, as discussed in section 3.5. We note that 
these line strengths may also be affected by poor spin-orbit parameters. 
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4. 2. Cascade coefficients 

In many astrophysical plasmas, the population distribution of  a given ion between the various states of  its ground 
configuration can be strongly influenced by the effects of  collisional excitation to a higher configuration followed 
by radiative de-excitation via cascade to the levels of the ground configuration. Pecker and Thomas [45] have 
studied such effects theoretically in the solar corona. For such analyses, one requires (a) the forbidden transition 
probabilities between the levels of  the ground configuration, (b) radiative data connecting the excited configura- 
tions to one another and to the ground configuration, and (c) various collision data, outside the scope of  the pre- 
sent paper. Data of  types (a) and (b) can be obtained from the program. However, it is inconvenient to manipulate 
the vast amount of  radiative data which can be involved when accounting for cascade effects. One can allow for 
cascade effects by using cascade coefficients, which incorporate all relevant information in a compact form. In the 
remaining part of  this section we define the cascade coefficients and set up the system of linear equations which 
they satisfy. 

Consider an atomic system in which we restrict ourselves to studying the first N t levels. We suppose that the 
ground configuration has Ng levels. We denote a cascade coefficient by CLi where i > Ng and j <, Ng. Cj, i is the 
probability that an excitation to the level i gives a cascade to the level j of  the ground configuration. We may ob- 
tain a general expression for the cascade coefficients in terms of normalised transition probabilities: 

Pk,i Z A k  i/Ai , where A i = G A k i, (132, 133) 
' k < i  ' 

Ak, i being the probability for a transition from i down to k. It follows that 

Ck,Ng+l = Pk,N¢+I, Ck,Ng+2 = Pk~Ng+2 + PNg+l,Xg+2 Ck,Ng+l (134) 

where k ~< Ng. In general 

i 1 

Ck,i=Pk,i + ~ PLiCkj, N t > ~ i > N g  , k<~Ng. (135) 
j=Ng+l 

In practice, since C/, i is undefined when i ~<Ng or whenj  > Ng, C/, i can be stored as a matrix of  size (N t -Ng)Ng. 

5. Term-coupling coefficients 

Term-coupling coefficients are required by Saraph's program JAJOM 19], which processes LS-coupling reactance 
matrices R to produce intermediate-coupling R-matrices. In order to see where the term-coupling coefficients come 
into the procedure we write down the necessary transformations. We use the following notation: upper case letters 
with a subscript i refer to the target ion; lower case letters are used for quantum numbers of  the colliding electron; 
upper case letters without any suffixes are used for the angular momenta of  the whole system (target + electron). 
With Saraph we denote the LS-coupling R-matrices by RSLp(FiSiLils; PlS(L~l's') and the intermediate-coupling 
R-matr ices  by RJP(AiJilK; A'iJ(l'K'), where p is the parity of  the whole system, and good quantum numbers 
for the system appear as superscripts to the appropriate R-matrix elements. The above matrices R Jp are obtained 
from the R SLp by two successive transformations. Firstly, a purely algebraic transformation to pair coupling is 
carried out: 

S i + L i = J i  , J i + l = K  and K+s=J, (136) 

JP . . . . .  K') R (FiSiLiJilK; PiSiLiJil = ~ X(SLJ, SiLiJi, IK)RSLp(PiSiLils; VlSlLifs') X(SLJ, SIL~Ji', I'K'), (137) 
SL 



W. Eissner et al., Atomic structures and radiative data 297 

where the recoupling coefficients X involve products of Racah coefficients: 

X(SLJ, SiLiJ i, lK) = ((2S + 1) (2L + 1) (2K + 1) (2J i + 1)) ' /z W(rlSiLi; LiK ) W(LJSis; SK). (138) 

Secondly the R Jp matrix on the left-hand side of (137) is transformed to allow for term coupling (i.e. departures 
from LS-coupling) in the target: 

R JP(Aigile; AiJil'K') = ~ fji(Ai, PiSiLi) RJP(FiSi LiJilK; F~S~LI31 l' K')fj~(AI, FISIL~), (139) 
FiSi L i 

where the fJi are term-coupling coefficients defined by 

fji(Ai, r'iSiLi) = ~ aSiLi(vi, Ci~i) bJi(zXi, CifJiSiLi). (140) 
q~i 

The eigenfunction labels F i and A i implicitly contain a definite target parity Pi, since any one eigenfunction can 
only be constructed from states [ t) or ] U) having one definite parity. Hence the coefficients fj. refer to a definite 
target parity Pi: in general there will be two sets o f f j  for each Ji, corresponding to the two p~ssible target parities. i 

Eqs. (139) and (140) have been derived by Jones [8],  who uses JiJ coupling introduced by Saraph et al. [46] 
rather than the pair coupling of (136): this does not affect the form of (139) and (140). It should be noted that 
(139) differs from eq. (11) of Saraph [9], in that the symmations over I" i and I~ are incorrectly omitted in the 
latter equation. However the full summations of (139) are carried out within JAJOM and therefore this criticism 
does not apply to JAJOM itself [68]. 

In eq. (139) it is assumed that the same vector coupling techniques are used to calculate the fJi coefficients as 
are used to calculate the matrices R Jp [8]. Thus, in the calculation of the fJi and the R Jp, the same linear com- 
binations [Ci~3iSiL i) of Slater states must be used throughout. Use of the present program avoids phase inconsis- 
tencies that might develop within the calculation of the fJi' since the representations I" i and A i are calculated from 
the same basis set [Cit3iSiLi). R-matrices calculated in a representation consistent with these fj. may be obtained 
from the distorted wave program of Eissner [1] or the coupled equations program IMPACT [~7]. The latter 
program sets up and solves the coupled equations using algebraic coefficients calculated by one of Eissner's 
programs [1,48]. As discussed in section 2.2, SUPERSTRUCTURE allows some flexibility in the way Slater 
states and VCC's are set up, and this can affect the phase of the fJi" There is a safeguard incorporated in the 
program which prevents a choice being made which could produce phases inconsistent with the distorted wave 
or collision algebra programs of Eissner [1]. 

Finally, we note that term-coupling coefficients connecting terms of different multiplicity may be sensitive 
to the accuracy of the non-relativistic term separations and to the accuracy of the off-diagonal element of the 
finestructure interactions which couple the terms. The errors in intercombination collision strengths produced 
by such errors in term-coupling coefficients resemble those produced in the corresponding line strengths from 
the same sources (see sections 3.5 and 4.1.4). A detailed numerical example is given by Jones ([30], section 5). 

6. Program checking 

A multi-purpose program which can carry out the wide range of atomic data calculations discussed in sections 
2 to 5 obviously requires quite extensive checking in all its aspects. In the following three subsections we outline 
the various checks which have been used. 

6.1. The non-relativistic structure problem 

Four kinds of checks were carried out: 
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(i) The program was checked for consistency by varying MsM L . 
(ii) On modifying appropriate input parameters the program will replace the potential (29) by a Coulomb 

potential (scaled or unscaled). Using this facility, results of  Layzer [14] and of  Godfredsen [3], who employed 
hydrogenic wave functions to carry out calculations for a number of  iso-electronic sequences, were reproduced. 

(iii) Coefficients B~'! were checked in cases which have been tabulated in Chapter 7 of  TAS. 
(iv) Calculated term energies using statistical model radial functions have been compared with various Hartree 

Fock selfconsistent field calculations, e.g. by Eissner and Jones [7], who carried out such a comparison for O IIl 
and Si IX; they also compared term mixing coefficients with corresponding Hartree Fock values. 

6. 2. The relativistic corrections 

The coefficients t-(v) r~(v) ,~(v) ~UU" ~UU' and LUU, were checked in the following ways: 
(i) The coefficients were calculated with different choices of  M, the azimuthal component of  J. 

(ii) The coefficients C~) U, were checked against those tabulated in Chapter 11 of  TAS, and against some of  
the coefficients tabulated by Condon and Odabasi [49]. 

(iii) The coefficients ~UU' r~(v) and EbV b, were checked against the results of  a number of previous claculations, 
mainly for pn, sp and d n configurations. The sources of  the results which were used for comparison have been 
listed fully by Jones [6]. In the case of  off-diagonal elements, the coefficients D and E tabulated by some other 
workers are incomplete for the reasons discussed in [6]. We made spot checks of  certain off-diagonal elements 
by comparing them with our own hand calculations. 

It is worth remarking that in the case of degenerate terms SL the coefficients/3, C, D and E need not agree. 
with results calculated by other workers, due to the arbitrariness of the frame of  reference of  the vector-coupling 
coefficients (see section 2.2). 

A further general check may be made on the diagonal elements of  fine structure interaction by using the fol- 
lowing sum rule: 

~ ( 2 J +  1)(Cj3SLJMI 0 [k]" S [k] [C[3SLJM) = 0 if k > 0. (141) 
J 

De Shalit and Talmi ([20] ,  p. 215) have derived the/'j-coupling analogue of  (141) and it is a simple matter to apply 
their arguments in LS-coupling. It follows from (141) that the weighted sum of the coefficients ,-(v) of  a given t.,UU, 
spin orbit parameter will vanish when the sum is taken over all the fine structure components of  a given term*. A 
similar check may be applied to the coefficients D and E of  the V x and N x integrals, considering each X separately. 

Checks on the one-body relativistic corrections were made by carrying out calculations for hydrogenic systems, 
comparing the energies obtained with the usual Pauli formulae for the energies of  ns, np and nd (n ~< 3) states. 

It was more difficult to carry out checks on the Blume and Watson spin--orbit parameters, since other calcula- 
tions of  these parameters use different wavefunctions. Two types of  checks were made: 

(a) We make use of  an input facility of  practical importance, which allows to specify a set C O as closed shells 
common to all configurations considered; this set C O of  electrons is treated separately in the code, making full 
use of  closed-shell properties. As an example we consider the configuration C = ls22s22p. The check consists of  
comparing the results from different choices of  C o, say either C O = 1 s22s 2 or C O = 1 s2;in the latter case, where 
we have C = Co2S22 p, the program processes the two 2s electrons on the same basis as others (in this instance 2p) 
that do not happen to form a closed shell. However, the resulting fine structure splitting must not depend upon 
the specification of  C o. 

(b) Comparisons were made with the single-configuration Hartree-Fock spin orbit parameters calculated by 
Froese [50]. One would expect results from single-configuration Hartree Fock and statistical model functions 
to be similar for positive ions (see ref. [7] ), and the agreement between the two sets of  theoretical spin-orbit  

ttowever, the sum rule does not necessarily hold when C/3 is replaced by 1", i.e. when off-diagonal elements are taken into account. 
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parameters is very satisfactory * (Jones [51 ), although in the case of  the 1 s22s22p 63p configuration of  the 
sodium sequence, the spin -orbit  parameters ~'(3p, 3p) from SUPERSTRUCTURE agree slightly better with ex- 
periment than those from Froese's work; there is no apparent physical reason for this. 

6.3. Non-relativistic radiative data 

Checks of  radiative data were made in the following cases: 
(i) Oscillator strengths f for transitions between states n ~< 3 in hydrogen were compared with the values 

tabulated by Glennon et al. [52] .4- 
(ii) For O III, f-values for the transitions between the ground configuration and first excited, odd parity con- 

figuration have been compared with the values given by Smith and Wiese [53].  The results obtained in a five con- 
figuration approximation are in excellent agreement [54].  

(iii) In the beryllium iso-electronic sequence, f-values for various transitions were calculated in various levels 
of configuration mixing. These results were compared with corresponding results calculated by Burke et al. [55]. 

(iv) Algebraic part (C{3SL [i C [2] (3', "1")[I C'(3'S'L') of  line strength amplitudes were checked against values given 
by Garstang [42, 56, 57] for electric quadrupole transitions in certain configurations of  the type d n and dns r. 

6.4. Intermediate-coupling radiative data 

Intermediate-coupling radiative data was checked in the following ways: 
(i) Hydrogen as in 6.3, but we made comparison with the fine structure transition probabilities given by 

Glennon et al. [52]. 
(ii) gf-values for permitted transitions and transition probabilities for forbidden transitions were compared 

with results of  Garstang [58] in the cases of  Fe XIV and Si X [7, 24].  Transition probabilities for forbidden tran- 
sitions in the ground configurations of  O II and O III were calculated and compared with the values compiled by 
Glennon et al. [52] respectively. In all these cases overall agreement was excellent. 

(iii) One of  us (HN) developed an independent version of  the program for calculating radiative data: this version 
uses the same subroutines for dealing with the non-relativistic structure problem and the algebra of  the spin-orbit 
interaction. Results from the two programs were compared in the following two cases: 

(a) a six-configuration approximation for Fe XVII; 
(b) a three-configuration approximation for Fe XIII. 

(iv) Mason [59] has carried out calculations of  intermediate-coupling collision strengths for Fe X, Fe XI, 
Fe XIV, Ca XII, Ca XIII and Ca XV. These calculations can be used as a consistency check on the radiative data, 
since one would expect the collision strengths to be roughly proportional to the corresponding gf-values [60]. 
This type of  proportionality is indeed observed, which indicates phase consistency between data from SUPER- 
STRUCTURE and Mason's collision strength data ~. 

* The spin-orbit parameters quoted in ref. [5] for the sodium sequence are wrong, because there was an error in the program at 
the time: corrected results appear in ref. [51]. 

+ (Footnote added in proof.) Also boron sequence transitions, using hydrogenic wave functions and representing each term by the 
full complex, were checked against calculations of Weiss [69]. 

¢~ However, the two sets of calculations are not completely independent, since Mason's collision strengths incorporate term-coupling 
coefficients from SUPERSTRUCTURE. Elsewhere in Mason's calculations the algebraic manipulations are completely indepen- 
dent of SUPERSTRUCTURE. 
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7. Critical discussion 

In this section we discuss the advantages and disadvantages of  the formulation developed in the earlier sections. 
We consider first some of the advantages: 

(i) The Slater state expansion method makes no reference to parentages of terms: consequently the data 
which SUPERSTRUCTURE requires in order to enable it to calculate all necessary algebra consists merely of  a 

list o f  configurations. On the other hand, currently available programs based upon fractional parentage techniques 
require information about the genealogy of  each term, as for example in the program of  Hibbert [61]. This implied 
option in programs such as that of  Hibbert [61] means that one can drop terms of  certain parentage, but further 
down the gg.,nealogical tree it becomes increasingly difficult to assess the consequences of  doing this; there is also 
a risk of  errors due to accidental omission of  important  parent terms. Thus it is considerably more convenient 
to specify the configuration only. A less serious point is that currently available routines for calculation of  frac- 
tional parentage coefficients are restricted to configurations with specific types of  electrons (e.g. the routines of  
Allison [62] calculate fractional parentage coefficients for equivalent p-shell and d-shell electrons). The Slater state 
coupling routines which incorporate methods of  section 2.2 are in principle applicable to all configurations.* 

(ii) The program is not restricted to using only the internally-generated statistical model wavefunctions, but 
may alternatively employ user-supplied wavefunctions. These supplied functions may, for example, be mutticon- 
figuration Hartree Fock functions obtained from the program of  Froese-Fischer [63],  or frozen cores functions 
obtained from the program IMPACT of  Seaton and Wilson [47]. 

(iii) Configuration mixing effects involving bound configurations can be taken into account in a very general 
way. 

(iv) The algebraic coefficients of  the two-electron operators of  the Breit Pauli hamiltonian have been expressed 
in terms of  coefficients cx(lm, l 'm ' )  and dx( lm,  l'rn'). This makes it possible to set up tables of  c x and d x coeffi- 
cients before calculating the algebra, so that recalculation of  them is avoided. This results in conslclerable saving 
of  computer time. 

(v) The wide range of  atomic structure data considered makes SUPERSTRUCTURE highly suited for astro- 
physical applications. 

Criticisms of the techniques employed are: 
(i) Froese-Fischer [64] has pointed out that the number of Slater determinants may become quite large: this 

could lead to inaccuracies in the evaluation of matrix elements due to cancellation. In practice, we find that, using 
double precision on an IBM 360/65, coefficients A, B and C have errors of  less than one part in 107, even in cases 
involving large numbers of  Slater states. This small error is due to: (a) inaccuracies in the vector-coupling coeffi- 
cients (ul t) resulting from numerical errors inherent in the Jacobi procedure [65] used in the diagonalisation of  
the S 2 and L 2 matrices. (b) Caacellation errors in the transformation from the Slater state representation to that 
of S L M s M  L or of  JM. We have not investigated the relative importance of  (a) and (b), since the overall error is 
insignificant for practical purposes. The errors in the coefficients D and E are larger, but they are still less than one 
part in 105: this larger error is probably the result of  the greater complexity of  the corresponding matrix elements 

[see eqs. (74) to (77)1. 
(ii) It has been pointed out that statistical model functions could be poor for neutral or near-neutral atomic 

systems. However, when configuration mixing is allowed for, statistical model functions provide a better  represen- 
tation than is generally recognized. Statistical model wave functions have been used for targets in electron-atom 
collision calculations, e.g. for e -  + 02+ by Eissner and Seaton [54], and for e -  + O by Saraph [66]. The same set of  
O III target functions yields excellent radiative data, as mentioned in section 6.2. Saraph's functions reproduce 

* Though is not allways true in practice: in nuclear physics, where orbitals with high angular momenta such as f or g occur with 
relatively small numbers of nucleons, the Slater state coupling procedure rapidly becomes impracticable owing to the large num- 
ber of Slater states, resulting in excessive demands on CPU and storage resources. Therefore fractional parentage techniques are 
commonly used in nuclear structure problems. 
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the observed target energies of neutral O I just as satisfactorily as far more elaborate selfconsistent-field calculations 
(iii) In cases such as d 6, the computer time used in the calculation of the algebra of the interactions go(so + so') 

and gii(ss') becomes large, despite the use of the technique (iv) described above. Further reductions in computer 
time can be achieved by making more use of the Wigner-Eckart theorem. The use of transformation (50) to ob- 
tain eigenfunctions o f J  2 and Jz is then avoided by working in terms of eigenstates ISLMsML). Assuming that the 
interaction is of the form V[ k;01 as in eq. (48), we have [12, 43] 

(2';) (CfJSLJIIS [kl" 0 Ix] IIC?'S'L'J) = ( - - 1 ) S ' + L + J [ ( 2 S  + 1) (2L + 1)] 1 / 2  (C~SLIIS [k]" 0 [kl II C'j3'S ~L '). (142) 
' L  

matrix element (CI3SLMsM L H S[ kl Ikl . . . . . .  "0 IIC [J S L M'sM)): the Hence it is only necessary to work out the single 
reduced matrix element on the right-hand side of (I~2) is easily deduced from this using 

(C(JSLMsM L II S [~1. Otgl I[ C'I3'S'L'M'sM' L) 
(C(3SLIIS [k]. 0 [k][[C'(j'S'L') = S' k S ~ L '  k L ' (143) 

 M's M's-Ms M'L MI-ML ML 
where we have made a double application of the Wigner-Eckart theorem [12], Clearly, in order to apply (143), 
MsM L and M'SM' L must be chosen so that the Clebsch-Gordan coefficients in the denominator do not vanish. 
When calculating the fine-structure algebra, it can be shown that the above modification will result in a reduction 
of the computer time requirements by a factor whose maximum value will be roughly equal to the mean square 
of the multiplicities of all the terms arising from the configuration. 

(iv) SUPERSTRUCTURE omits the non-fine structure interactions discussed in section 3.4. As mentioned there, 
this will affect the accuracy of total energies and ionisation potentials. Using the theory developed in section 3.4 
it would be straightforward to introduce these interactions into SUPERSTRUCTURE. However, the effect of  
these terms upon intermediate coupling radiative data and term-coupling coefficients will be negligible. 
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A p p e n d i x  A 

Expressions for the mutual spin-orbit and spin-other-orbit interactions in terms of spherical tensor operators 

Such expressions have been given by Blume and Watson [23], who write (labelling particles by 1 and 2): 

--o~2( rl~2 X Pl~ "(Sl + 2s2) = VI + V2 + V3, (A1) 
r~2 / 
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where Vt , V2 and V3 are made up of products of spherical tensor operators. and have been defined in [23]. 
However, except in the case of VI, their matrix elements between products of one-electron functions yield ex- 
pressions containing more than one type of integral. For example, the matrix element of V3 consists of a sum 
over terms containing integrals N”(ab, cd) and Nhm 2(~a, dc). In order to obtain expansions of type (5 1). in which 
the algebraic coefficients of specific integrals are required, we recast Blume and Watson’s expression in the fol- 
lowing form (utilizing the notation of eq. (20) with regard to particle labels 

where 
h-l 

v’I’2’=“22 c (-I)h {~h(ht1)(2ht1)}“2 cc’*] (1) C[A] (2)>“’ (S(l) t 2S(2))‘i Y 2 
h>O ;\+2 2 at-, ) r > 

V$ = cY2 c (- l>h {3(2X + 1)}“2 (2L 1) {T[” -I;*] (I) C[h 1](2)}[1’ (S(l) t 2s(2)) 
h i 

l (2~ - 1)(2h+3) 

> 

“’ CTl~Pt;h~ (2) c[ 
1 ri 1 

x+1 
h+1’ (W .Cs(2) + 2mj-p 4-1 y2> 

and 

$T = cY2 Jr? (- 1p Cf(2h+ l)}“* X{ T[hi”I (I) c[“I (2)}[11 (s(l) t 2s(2)) 
x 

h r_, 
(X + 1) {T’“;h’ (2) c[*’ (I)}“’ (S(2) + 2s(I)) +3 E(Y/ Yz). 

Yl 

(A3) 

(A4) 

(A9 

In eqs. (A3), (A4) and (A5) terms of the type {A’Q’ B[k2’}lk] d enote 
formed from tensors Afkll 

a product spherical tensor of degree k 

and BIkd , which are of degr-ee k, and k2 respectively, that is 

{ALkll B[k2]}rI = c, C kl k2 k _,Jk,l B[k2l 
4142 41 42 4 41 42 

where the subscript q on the left denotes the qth component of the product tensor. A particular example among 
these product tensors is ~[h’;h] , which has been used in (A4) and (A5); it is defined as 

T[*‘;*] (I) = (61 (I) Z(1)}[“] (A7) 

Its spherical components are 

The function e(x) has been defined in eq. (72). It should be noted that the tensors ~[h’;*] defined in (A7) differ 
from Tf’) mtroduced by Blume and Watson [23] by a factor of [4n/(2X’+ l)]“‘. Throughout this paper we 
have preferred definitions like that of TlaibI , because they are closer to the origin of these tensors as well as more 
convenient when ap lying the tensors strictly as spherical operators in a Slater state space. 

The operator VI’, is symmetric in particles I and 2; it is equal to the operator VI of Blume and Watson. The P 

operators e/) and V’$” can easily be obtained by rearrangement of the terms within Blume and Watson’s operators 
V, and V3. 
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The matrix elements of the operators defined by (A3), (A4) and (A5) can be obtained in a similar way to that 
described by Jones [6] ; this reference employs T(~ ) as introduced by Blume and Watson [23] rather than T[a~ 1 . 
In order to obtain matrix elements in terms of the coefficients c a and d~, it is convenient to use the following 
relations: 

q]malC~ xl [12m 2) = 6(K, m 1 -m2)( - -  1) x-m2 cx( l lml ,  12m2), 

x / ( 2 l l + l ) ( 2 1 2 + l ) f ~ l l  l2X f " %  l I l 2 X 

K.~, o k . S  c~'(l lml'12rn2)= 2X+l 0 0 --m 1 m 2 m  2 m 1 

and 

[/2(/2 +1)(2/_1 + 1)_] '~2 
<llrnllT[X';X~lll2m2)=(-1)x'-m2 L 2X'+l J (212+1) 

C~ 12~ C 11 12 ~ {l: 12 ~} 
X ~ ( ~ ' m l - m 2 )  0 0 - m l  m2 m 2 m 2 X l 2 (AIO) 

rather than (A2) and (A5) of Jones [6]. Our definition (A7) shows that, in general, three distinct irreducible ten- 
sors arise for a given X'; thus we may distinguish three cases of (A10), defining an additional coefficient d x: 

(i) X'= X, 

ll 12 ~ i  (All)  qlml lT[X;~][12m2)=(-1)h-m2 [12(12+1)(212+1)(2X+1)]1/2 6(~'ml m 2 ) c x ( l l m l ' 1 2 m 2 )  1 ~ 12 " 

(ii) X' = X-  1, 

[12(12+1)(212+1)31/2 {ll 
( l lm l lT[? ' - l ;~ l l l zm2>=-6(K 'ml  mz)(-1)x-m2 2~--1 d x - l ( l l m l ' l z m 2 )  1 12 ~ ' t  ' 

X-1 12 
(a l2)  

C I l 2 k C ll 12 ~k+l 
dx ( l lm1 '12m2)=x / (211+l ) (212+l )  0 0 0 - m  1 m 2 m 2 - m  1 

The third possible case, namely X' = X + 1 is not needed because in (A4) we have eliminated T[X+l;xl from (A4) 
by using the fact that 

qlmllT[X+l;~]llzm2> _ [ X(ZX-1) ] 1/2 
(a13) 

q l m l  T[X-1;~]ll2m2> [(X+l)(2X+3) J 

(c.f. ref. [23], eq. (A17)). If we did not use (A13), it would be necessary to introduce another coefficient in addi- 
tion to the d x of eq. (78). As noted by Jones ([6], Appendix 1), the 6j-symbols in (A11) and (A12) can be ex- 
pressed in closed form thus: 

ll 12 k / 11(l 1 + 1 ) - k ( k +  1)-12(/2+ 1) 
= ( -  1) x+½-/1 (A14) 

1 ~k IzJ [4/!(/2+ 1)(2/2+ 1) X(X+ 1)(2X+ 1)] 1/z 
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and 

X- 1 12 4(2X + 1) X(2X- 1)/2(/2 + 1)(2/2 + 1) " (A15) 

Appendix B 

Expressions for the orbit- orbit interaction in terms of spherical tensor operators 

It can be shown [24], that the orbit-orbit interaction can be written 

g12(oo') = W 1 + W 2 + W 3 + W 4 , 
where 

(B1) 

ra<+l 1] (B2) 1 1 r~ 0 
WI = a2 x>0 ~ C[xl( / )"  C[xI(2)X(X+I) 2X+3 rX>+2 2X- 1 .r~> ar 1 Or 2'  

W2=-2a2  x>o ~ C[X](1)" T[X;X](2) ~ ( ~ [  2X-',3 2x- i  j r: ar~' (B3) 

2a 2 2k-1 
W 3 = Z., X>0 - ~  

and 

4 1 
T[x 1;2,1(1). T [x-I;M (2) - --, 

rX> +2 
(B4) 

[4/4=--0~2 X>0 ~ T[k;k] (])" T [ M k ] ( 2 ) [ -  7k(;k + ~ 3 )  rX> +-~rx< + ()k+2~,l)(~--_ 1 2)r--~rX<:-2 ]" (B5) 

In (B3), M x is defined by 

r~ 
2) ~ e(r 1 - r2). MX(r l , r2)=(X 1).~+2e(r 2 r l )  (X+ (B6) 

r 2 r] 

The spherical operators T[ x'; x] are defined by eqs. (A7) or (AS). Scalar multiplication is denoted by a dot. As 
usual r< stands for the smaller and r> for the,bigger of the two radii r 1 and r 2. 

The matrix elements of the operators W i, that is (abl WilcclY, can be found using similar techniques to those 
employed in deriving the matrix elements of&/(so + so') (see [6], and Appendix A) and gij(ss'). To find the 
matrix elements of C[ x] or TP"; x], one uses eqs. (Ag) or (A10), (A11) and (A12) respectively. The 6]'-symbols 
appearing in tile matrix elements of T[ x';x] can be written in closed form using eqs. (A14) or (A15) as appropriate. 
Inspection of (A11) and (A12) shows that (/lrnll T[ x;x] [12m 2) has the same dependence upon the azimuthal 
quantum numbers m I and m 2 as (l 1 roll C[Xll/grn~). On the other hand, the matrix element of (/1 ml]T[ x 1;~']112m2) 
is proportional to ( l )m2dx( l l rn( ,  12m2). It therefore follows that the matrix elements of W1, W 2 and W 4 will 
have the same angular dependence as the inter-electron Coulomb interaction, unlike W 3 . The contributions 
from W 1, W 2 and W 4 can thus be absorbed into the Slater integrals as discussed in 3.4, but those from W 3 need 
to be considered separately. 
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